

Microsoft Data Analytics

Applied DAX with

Power BI

From zero to hero with

15-minute lessons

Teo Lachev

Applied DAX with Power BI

From zero to hero with 15-minute lessons

Published by:

Prologika Press

info@prologika.com

https://prologika.com

Copyright © 2019 Teo Lachev

Made in USA

All rights reserved. No part of this book may be reproduced, stored, or

transmitted in any form or by any means, without the prior written

permission of the publisher. Requests for permission should be sent to

info@prologika.com.

Trademark names may appear in this publication. Rather than use a

trademark symbol with every occurrence of a trademarked name, the

names are used strictly in an editorial manner, with no intention of

trademark infringement. The author has made all endeavors to adhere to

trademark conventions for all companies and products that appear in this

book, however, he does not guarantee the accuracy of this information.

The author has made every effort during the writing of this book to ensure

accuracy of the material. However, this book only expresses the author's

views and opinions. The information contained in this book is provided

without warranty, either express or implied. The author, resellers or

distributors, shall not be held liable for any damages caused or alleged to

be caused either directly or indirectly by this book.

ISBN 13: 978-1-7330461-0-7

ISBN 10: 1-7330461-0-0

Author: Teo Lachev

Technical reviewer: John Layden

Cover designer: Zamir Creations

Copyeditor: Maya Lachev

The manuscript of this book was prepared using Microsoft Word.

Screenshots were captured using

TechSmith SnagIt.

contents

PART 1 INTRODUCTION

LESSON 1 INTRODUCING DAX

LESSON 2 EXPLORING THE MODEL

LESSON 3 UNDERSTANDING STORAGE

LESSON 4 UNDERSTANDING CUSTOM COLUMNS

LESSON 5 RELATING DATA

LESSON 6 AGGREGATING DATA

LESSON 7 FILTERING DATA

LESSON 8 GROUPING AND BINNING VALUES

LESSON 9 IMPLEMENTING CALCULATED TABLES

PART 3 MEASURES

LESSON 10 UNDERSTANDING MEASURES

LESSON 11 CREATING BASIC MEASURES

LESSON 12 DETERMINING FILTER CONTEXT

LESSON 13 WORKING WITH VARIABLES

LESSON 14 CHANGING FILTER CONTEXT

LESSON 15 GROUPING DATA

PART 4 TIME INTELLIGENCE

LESSON 16 WORKING WITH DATE TABLES

LESSON 17 QUICK TIME INTELLIGENCE

LESSON 18 CUSTOM TIME INTELLIGENCE

LESSON 19 SEMI-ADDITIVE MEASURES

LESSON 20 CENTRALIZING TIME INTELLIGENCE

PART 5 QUERIES

LESSON 21 INTRODUCING DAX QUERIES

LESSON 22 CREATING AND TESTING MEASURES

LESSON 23 OPTIMIZING QUERY PERFORMANCE

LESSON 24 USING POWER BI REPORT BUILDER

PART 6 ADVANCED DAX

LESSON 25 RECURSIVE RELATIONSHIPS

LESSON 26 MANY-TO-MANY RELATIONSHIPS

LESSON 27 JOINS WITH EXISTING RELATIONSHIPS

LESSON 28 VIRTUAL RELATIONSHIPS

LESSON 29 APPLYING DATA SECURITY

LESSON 30 IMPLEMENTING DYNAMIC SECURITY

GLOSSARY OF TERMS

preface

DAX is growing in popularity thanks to the momentum

surrounding Microsoft Power BI, Excel Power Pivot, and

Analysis Services Tabular. Whether you are a business

analyst or a BI pro, a good working knowledge of DAX is

important for extending your models with custom business

logic. You won't get far in Microsoft BI without DAX.

This book was born out of necessity and I've been working on

it for a while. In my consulting practice, I had been teaching

and implementing Power BI and Analysis Services Tabular,

and people were constantly asking for DAX book

recommendations. Indeed, DAX is not an easy topic and has

its ways to humble even experienced practitioners. There are

a few good reference books out there, but they could be

somewhat overwhelming for novice users. So, I turned my

classroom and consulting experience into this book and

designed it as a self-paced guide to help you learn DAX one

lesson at a time.

As its name suggests, the main objective of this book is to

teach you the practical skills of how to take the most of DAX

from whatever angle you'd like to approach it. You’ll learn

DAX methodically with self-paced lessons that progress from

simple topics, such as calculated columns, to more advanced

areas, such as time intelligence, joins, and security. Most

lessons are five to six pages long, and it should take no more

than 15 minutes to complete the lesson's exercises. And if

you do one lesson per day, you'll be a DAX expert in a

month!

With the growing popularity of Power BI, I decided to use this

technology for the exercises. However, although this book

teaches you DAX with Power BI, a nice bonus awaits you

ahead because you're also learning how to program Excel

Power Pivot and Analysis Services Tabular. So, if one day you

find yourself working on a self-service model in Excel or an

organizational model powered by Analysis Services Tabular,

you'll find that you already have the knowledge.

Although this book is designed as a comprehensive guide to

DAX, it's likely that you might have questions or comments.

As with my previous books, I'm committed to help my

readers with book-related questions and welcome all

feedback on the book discussion forums on my company's

web site (https://prologika.com/daxbook). Consider also

following my blog at https://prologika.com/blog and

subscribing to my newsletter at https://prologika.com to stay

on the Microsoft BI latest.

Now, turn to the first lesson and get from zero to DAX hero at

your own pace!

Teo Lachev

Atlanta, GA

https://prologika.com/dax
https://prologika.com/blog
https://prologika.com/

about the book

The book doesn't require any prior experience with DAX, but

it assumes that you have experience in Power BI data

modeling. If you don't, I recommend you start with my

"Applied Microsoft Power BI" book, which teaches you how to

create self-service data models. To get the most out of this

book, read and practice the lessons in the order they appear

in the book. That's because each lesson builds upon the

previous ones, to introduce new concepts and reinforce them

with step-by-step exercises.

Part 1, Introduction, starts with the fundamentals. It

introduces you to the DAX origin and main constructs. You'll

learn important data modeling techniques, including star

schemas and relationships. You'll also learn about the Power

BI storage engine and how storage affects DAX.

Part 2, Calculated Columns and Tables, teaches you to

extend your tables with basic and advanced calculated

columns, including columns for looking up, aggregating, and

filtering data. You'll understand how calculated columns are

evaluated and how to change the evaluation context. And

you'll discover how calculated tables can help you implement

role-playing dimensions, date tables, and summarized tables.

Part 3, Measures, explains how measures give you the

needed programmatic power to travel the "last mile" and

unlock the full potential of Power BI. After learning the

measure fundamentals and filter context, it shows you how

to create basic measures. Then, it moves to more advanced

concepts, such as restricting and ignoring the filter context,

as well as grouping and filtering data.

Part 4, Time Intelligence, further expands your knowledge

of measures and teaches you how to implement time

intelligence. It starts by teaching you how to work with built-

in and custom date tables. After revisiting quick measures for

time intelligence, it teaches you how to implement custom

formulas for more advanced requirements, such as custom

date filters and semi-additive measures. You'll learn how to

centralize time intelligence formulas by using calculation

groups.

Part 5, Queries, covers creating custom queries to test

measures outside Power BI Desktop, exploring the model

data, and implementing reports with other tools that require

you to specify a dataset query, such as Power BI Report

Builder. You'll also discover how to identify and address

performance bottlenecks.

Part 6, Advanced DAX, starts by showing you how you can

use DAX to implement different types of joins, including

recursive (parent-child), many-to-many, inner, outer, and

other joins. It explains how to implement row-level security

(RLS) by applying DAX row filters. You'll also learn how to

handle more complicated security policies, such as by

externalizing secured policies in a separate table.

acknowledgements

Welcome to the Applied DAX with Power BI book! Writing

books is difficult and DAX doesn't make it any easier.

Fortunately, I had people who supported me. This book (my

eleventh) would not have been a reality without the help of

many people to whom I'm thankful. As always, I'd like to first

thank my family for their ongoing support. My daughter,

Maya, contributed the most by polishing the manuscript.

Thanks to my technical reviewer John Layden, whom I had

the privilege to work with previously on consulting

engagements, for reviewing the manuscript, and providing

valuable feedback. Thanks to Shay Zamir for another great

cover design.

As a Microsoft Most Valuable Professional (MVP), Gold Partner

(Data Analytics and Data Platform), and Power BI Red Carpet

Partner, I've been privileged to enjoy close relationships with

the Microsoft product groups. It's great to see them working

together! Special thanks to the Power BI and Analysis

Services teams.

Finally, thank you for purchasing this book!

conventions

This book uses different typefaces to differentiate between

code and regular English, and to help you identify important

concepts. Code that you type is presented in this font:

EVALUATE DimSalesTerritory

Referencing columns follows the DAX Table[Column]

notation. For example, DimEmployee [FullName] refers to the

FullName column in the DimEmployee table. Table

relationships also follow the DAX syntax. For example,

FactResellerSales[OrderDateKey] -> DimDate[DateKey]

denotes a many-to-one relationship between the

OrderDateKey column in the FactResellerSales table and the

DateKey column in the DimDate table. The relationship

direction (many-to-one) is indicated by the direction of the

arrow.

Exercises typically have the following sections although

sections can be omitted:

Practice

This section identifies the steps you need to take to

complete the exercise, such as the DAX code that you type

in.

Output

This section highlights the result from the practice, such as a

screenshot from a report that uses DAX calculations or

results from a query.

Analysis

The Analysis section provides the author's explanation about

the practice and output sections, such as line-by-line analysis

of a DAX formula.

source code

Applied DAX with Power BI doesn't require much to get you

started. You can perform all practices with free software, and

you don't need a Power BI license. Table 1 lists the software

that you need for all the exercises in the book. As you can

see, most of the software is not required.

Table 1 The software requirements for practices and code samples in

the book

Software Setup Purpose Lessons

Power BI Desktop Required Implementing self-service data

models

All

DAX Studio (https://daxstudio.org) Recommended Testing DAX queries Part 5

Power BI Service (powerbi.com) Optional Testing data security Part 6

SQL Server Management Studio

(SSMS)

Optional Testing DAX queries Part 5

Power BI Report Builder Optional Creating a paginated report Part 5

SQL Server Analysis Services Tabular

2019

Optional Implement calculation groups Part 4

Tabular Editor

(https://tabulareditor.github.io/)

Optional Implement calculation groups Part 4

You can download the source code for the practices from

the book page at https://prologika.com/daxbook. After

downloading the zip file, extract it to any folder on your hard

drive (I recommend C:\DAX\Source\). Once this is done, you'll

see a folder for each part of the book. In each part folder,

you'll typically find a file for each lesson and the file name

matches the lesson name. This file includes the DAX

formulas if you prefer to copy and paste them.

Start with the Adventure Works.pbix file in the

\Source\Practice folder and keep on extending it as you go

through the lessons. For your convenience, the Adventure

Works.pbix file in each part folder includes the changes you

need to make in the exercises in the corresponding part of

the book, plus any supporting files required for the exercises.

https://daxstudio.org/
https://tabulareditor.github.io/
https://prologika.com/daxbook

For example, the Adventure Works.pbix file in the

\Source\Part2 folder includes the changes that you'll make

during the Part 2 practices.

(Optional) Installing the AdventureWorksDW database

Extending the Adventure Works model with DAX doesn't

require reimporting the data. However, Lesson 4 shows you

how you can implement custom columns in Power Query,

and this requires reimporting the affected tables. If you

decide to do this exercise, you need to install the

AdventureWorksDW database. This is a Microsoft-provided

database that simulates a data warehouse. You can install

the database on an on-prem SQL Server (local or shared) or

Azure SQL Database. Again, you don't have to do this

(installing a SQL Server alone can be challenging).

NOTE Microsoft ships Adventure Works databases with each version of SQL

Server. More recent versions of the databases have incremental changes and

they might have different data. Although the book exercises were tested with the

AdventureWorksDW2017 database, you can use a later version if you want.

Depending on the database version you install, you might find that reports might

show somewhat different data.

Follow these steps to download the AdventureWorksDW2017

database:

1.If you don't have a SQL Server, download and install the

free developer edition from https://microsoft.com/sql-

server/sql-server-downloads.

2.Download the AdventureWorksDW2017 backup file from

https://github.com/Microsoft/sql-server-

samples/releases/download/adventureworks/AdventureWorks

DW2017.bak.

3.Install SQL Server Management Studio (SSMS) from

https://docs.microsoft.com/sql/ssms/download-sql-server-

management-studio-ssms.

4.Open SQL Server Management Studio (SSMS) and connect

to your SQL Server database instance. Restore the

AdventureWorksDW2017 backup file. If you're not sure how

to do so, read the instructions at

https://microsoft.com/sql-server/sql-server-downloads
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorksDW2017.bak
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

https://github.com/Microsoft/sql-server-

samples/releases/tag/adventureworks.

NOTE The data source settings of the sample Power BI Desktop models in the

source code have connection strings to the AdventureWorksDW database. If you

decide to refresh the data, you must update the AdventureWorksDW data source

to reflect your specific setup. To do so in one step per file, open the *pbix file in

Power BI Desktop, and then expand the Edit Queries button in the ribbon's Home

tab, and click "Data source settings". Click the "Change source" button and

change the server name to match your SQL Server name.

Reporting errors

Please submit bug reports to the book discussion list on

https://prologika.com/daxbook. Confirmed bugs and

inaccuracies will be published to the book errata document.

A link to the errata document is provided in the book web

page. The book includes links to web resources for further

study. Due to the transient nature of the Internet, some links

might no longer be valid or might be broken. Searching for

the document title is usually enough to recover the new link.

Your purchase of APPLIED DAX WITH POWER BI includes

free access to an online forum sponsored by the author,

where you can make comments about the book, ask

technical questions, and receive help from the author and

the community. The author is not committed to a specific

amount of participation or successful resolution of the

question and his participation remains voluntary. You can

subscribe to the forum from the author's personal website

https://prologika.com/daxbook.

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://prologika.com/daxbook
https://prologika.com/dax

PA RT 1

Introduction

If you imagine a layered Power BI model, where the bottom

layer is Power Query (for data shaping and transformation)

and the middle layer is the data model (where your tables

and columns are), then DAX calculations will be the top layer.

Therefore, DAX is dependent on the model schema and data

quality. If you don't get these layers right, you won't be

successful with DAX either. Therefore, the book starts with

important fundamentals.

The first lesson introduces you to DAX, its origin, and main

constructs. In the second lesson, you'll learn important data

modeling techniques, including star schemas and

relationships. Lastly, it's important to have at least a high-

level understanding of the storage engine to better

understand how DAX formulas work.

When going through the exercises, start with the

Adventure Works.pbix file in the \Source\Practice folder. If

you need to refer to the completed exercises and reports for

this part of the book, you'll find them in the Adventure Works

model in the \Source\Part1 folder included in the book source

code.

Lesson 1

Introducing DAX

Power BI promotes rapid personal business intelligence (BI)

for essential data exploration and analysis. Chances are,

however, that in real life you might need to go beyond the

raw data and simple aggregations. Business needs might

necessitate extending your model with calculations. DAX

gives you the programmatic power to travel the "last mile"

and unlock the full potential of Power BI.

This lesson introduces you to DAX and how it's used in

Power BI. You'll use DAX to implement a simple calculated

column, measure, and a query with the provided Adventure

Works Power BI Desktop file in the \Source\Part1 folder.

1.1 Understanding DAX

Data Analysis Expressions (DAX) is a powerful formula-based

language included in Microsoft Power BI, Excel Power Pivot,

and Analysis Services Tabular that allows you to add custom

business logic with Excel-like formulas. DAX has two main

design goals:

 Simplicity – To get you started quickly with implementing

business logic, DAX uses the Excel standard formula

syntax and, in fact, inherits many Excel functions. If you're

a business analyst, you may already know many Excel

functions, such as SUM and AVERAGE. When you use

Power BI, you will find the same (or similar functions) in

DAX.

 Relational – DAX is designed with data models in mind and

supports relational artifacts, including tables, columns,

and relationships. For example, if you want to sum up the

SalesAmount column in the FactResellerSales table, you

can use this formula:

=SUM(FactResellerSales[SalesAmount])

Although this book teaches you DAX with Power BI, a nice

bonus awaits you ahead because you're also learning how to

program Excel Power Pivot and Analysis Services Tabular. So,

if one day you find yourself working on a self-service model

in Excel or an organizational model powered by Analysis

Services Tabular, you'll find that you already have the

knowledge!

1.1.1 A Short History of DAX

Realizing the growing importance of self-service BI, in 2010

Microsoft unveiled an Excel add-in called PowerPivot

(renamed to Power Pivot in 2013 because of Power BI

rebranding). Since the tool needed an expression language,

the natural choice was building upon and extending the

Excel formulas. This revised formula language was named

Data Analysis Expressions (or DAX for short) to emphasize its

role as a programming language for data analytics.

NOTE Given the relational nature of a data model, you might wonder why

Microsoft didn't opt for SQL instead of Excel-like formulas. Although this scenario

was strongly considered, SQL is a standard of the American National Standards

Institute (ANSI). Therefore, introducing new extensions turned out to be a difficult

proposition. Moreover, back then Microsoft believed that Excel would become the

Microsoft premium tool for data analytics.

On the professional side of things, Microsoft SQL Server

Analysis Services 2012 introduced a new implementation

path called Tabular, side by side with the traditional

Multidimensional path for designing OLAP cubes. BI pros use

Analysis Services Tabular to implement scalable

organizational models, such as in the case where they need

to import hundreds of millions of rows. Tabular is also the

workhorse behind Power BI Service (powerbi.com) and Power

BI Desktop. For example, every Power BI Desktop instance

has a corresponding Tabular service running in the

background that hosts the data model and processes DAX

queries from Power BI reports.

Because Tabular uses the same storage engine (called

xVelocity) as Power Pivot, DAX made its way to the

professional toolset. SQL Server 2012 extended DAX as a

query language to allow external tools to query Tabular

models in its native language.

In 2015, Microsoft unveiled Power BI as their next

generation BI platform for organizational and self-service

data analytics. Because Power BI is also powered by

xVelocity, it inherited DAX. Given the large momentum and

adoption behind Power BI, DAX now plays a more prominent

role than ever.

NOTE Although having its roots in Excel formulas, DAX formulas are designed to

operate on data models and thus reference tables and columns. Excel cell and

range references have no relevance in data models and can't be used in DAX.

1.1.2 What Can You Do with DAX?

In a nutshell, you can use DAX expressions to extend your

models with custom business logic and to query external

models. There are three main ways you can leverage the

programming prowess of DAX: calculated columns,

measures, and queries.

Introducing calculated columns

A calculated column is a table column that uses a DAX

formula to produce the column values. This is conceptually

like a formula-based column added to an Excel list. The

formulas of calculated columns are evaluated for each row so

they are useful if you want add custom columns that do

something with other columns in the same row. Consider a

calculated column called FullName that's added to the

Customer table. It uses the following formula to concatenate

the customer's first name and last name:

FullName=[FirstName] & " " & [LastName]

Because its formula is evaluated for each row in the

Customer table (see Figure 1.1), the FullName calculated

column uses a DAX expression to return the full name for

each customer by concatenating the FirstName and

LastName columns. DAX refers to this by-row evaluation

context as row context. Again, this is very similar to how an

Excel formula works when applied to multiple rows in a list.

When a column contains a formula, Power BI computes the

value for each table row and saves it. And from that point, a

calculation column is just like a regular column. Therefore,

calculated column values are immutable, meaning that they

can't change as a result of runtime conditions. For example,

the formula won't produce different results when the end

user applies a filter. Speaking of reporting, you can use

calculated columns to group and filter data, just like you can

use regular columns. For example, you can add a calculated

column to any area of the Power BI Desktop's Visualizations

pane when it makes sense to do so.

Figure 1.1 Calculated columns are expression-based

columns added to a table and are evaluated for each table

row.

Introducing measures

The true power of DAX is realized by implementing

measures. Measures are also expression-based but their

formulas are evaluated at runtime, that is when the report is

run. Specifically, DAX measures are evaluated at runtime for

each report cell as opposed to once for each table row. DAX

measures are always dynamic, and the result of the measure

formula is never saved. Moreover, measures are evaluated in

the filter context of each cell, as shown in Figure 1.2.

Figure 1.2 Measures are evaluated for each cell, and they

operate in filter context.

This report summarizes the SalesAmount field by countries

on rows and by years on columns. The report is further

filtered to show only sales for the Bikes product category.

The filter context of the highlighted cell is the Germany value

of the DimSalesTerritory[SalesTerritoryCountry] field (on

rows), the 2008 value of the DimDate[CalendarYear] field (on

columns), and the Bikes value of the

DimProduct[ProductCategory] field (used as a filter).

If you're familiar with the SQL language, you can think of

the measure filter context as a WHERE clause that's

determined dynamically and then applied to each cell on the

report. When Power BI calculates the expression for that cell,

it scopes the formula accordingly, such as to sum the sales

amount from the rows in the ResellerSales table where the

SalesTerritoryCountry value is Germany, the CalendarYear

value is 2008, and the ProductCategory value is Bikes.

NOTE Unlike calculated columns, which might be avoided by using other

implementation approaches, measures typically can't be replicated in other ways

– they must be written in DAX. That's because any other approach would produce

static values that don't change as a result of the user filtering data on the report.

For example, you may pre-calculate year-to-date (YTD) sales as of the most

current date, but this will not allow the user to see YTD sales as of a prior date.

Introducing DAX queries

Lastly, you can use DAX to query Power BI, Power Pivot, and

Analysis Services Tabular models. A DAX query is centered

on the DAX EVALUATE statement. For example, this simple

DAX query returns all data from the DimSalesTerritory table

in the Adventure Works Power BI model.

EVALUATE DimSalesTerritory

Although not officially supported by Microsoft outside Power

BI on the desktop, client tools can send DAX queriers to the

Analysis Services Tabular instance that is behind every Power

BI model (they can also send MDX queries). For example,

when you interact with a report, Power BI generates DAX

queries and sends them to the Analysis Services Tabular

instance that hosts the model. If you are tasked to create

reports using tools that require you to specify a query when

you connect to Tabular or Power BI, such as Microsoft

Reporting Services, you can create your own DAX queries.

NOTE While only Power BI Desktop is officially supported to interact with the

Analysis Services Tabular instance on the desktop, any client can interact with

the Tabular instance behind a Power BI Premium workspace and query a

published Power BI model. To learn more, read the article "Connect to datasets

with client applications and tools" at https://docs.microsoft.com/power-bi/service-

premium-connect-tools.

Another practical implication of a DAX query is creating and

testing DAX measures outside Power BI Desktop. Suppose

you are working on a complex DAX measure and you prefer

to test it and profile its performance in the DAX Studio

community tool. You can define the measure in DAX Studio

and use a DAX query to test the measure.

1.1.3 Understanding DAX Syntax

As I mentioned, one of the DAX design goals is to look and

feel like the Excel formula language. Because of this, the

DAX syntax resembles the Excel formula syntax. The DAX

formula syntax is case-insensitive. For example, the following

two expressions are both valid:

=YEAR([Date])

=year([date])

That said, I suggest you have a naming convention and stick

to it. I personally prefer the first example where the function

names are in uppercase and the column references match

the column names in the model. This convention helps me

quickly identify functions and columns in DAX formulas, and

so this will be the convention that I'll use in this book.

Understanding expression syntax

A DAX formula for calculated columns and explicit measures

has the following syntax:

Name=expression

Name is the name of the calculated column or measure. The

expression must evaluate to a scalar (single) value.

Expressions can contain operators, constants, or column

references to return literal or Boolean values. The FullName

calculated column that you saw before is an example of a

simple expression that concatenates two values. You can add

as many spaces as you want to make the formula easier to

read.

https://docs.microsoft.com/power-bi/service-premium-connect-tools

Expressions can also include functions that perform more

complicated operations, such as aggregating data. For

example, back to Figure 1.2, the DAX formula references

the SUM function to aggregate the SalesAmount column in

the FactResellerSales table. Functions can be nested. For

example, the following formula nests the FILTER function

inside the COUNTROWS function to calculate the count of

line items associated with the Progressive Sports reseller:

=COUNTROWS(FILTER(FactResellerSales, RELATED(DimReseller[ResellerName])

= "Progressive Sports"))

Referencing columns

One of DAX's strengths over regular Excel formulas is that it

is designed to work with data model constructs, such as

table columns and relationships. This is much simpler and

more efficient than referencing Excel cells and ranges with

the Excel VLOOKUP function that you might have used in the

past. Column names are unique within a table. You can

reference a column using its fully qualified name in the

format <TableName>[<Column Name>], such as in this

example which references the SalesAmount column in the

FactResellerSales table:

FactResellerSales[SalesAmount]

If the table name includes a space or is a reserved word,

such as Date, enclose it with single quotes:

'Reseller Sales'[SalesAmount] or 'Date'[CalendarYear]

When a calculated column references a column from the

same table, you can omit the table name. The AutoComplete

feature in the Power BI Desktop formula bar helps you avoid

syntax errors when referencing columns. And of course, DAX

has many formulas to help you tackle simple and complex

requirements, but this is all you need to know for now to get

started with DAX.

TIP The official DAX documentation by Microsoft can be found at

https://docs.microsoft.com/dax. Another useful reference resource maintained by

the community is the DAX Guide at https://dax.guide/.

https://docs.microsoft.com/dax
https://dax.guide/

1.2 Practicing Basic DAX

Next, you'll practice working a basic calculated column, a

measure, and a DAX query to get a taste of programming

with DAX. Because Power BI Service (powerbi.com) doesn't

currently support modeling features, you can't extend a

published model directly in Power BI Service. Instead, you

must use Power BI Desktop to extend your data model with

calculated columns and measures.

1.2.1 Implementing a Calculated Column

DAX includes various operators to create basic expressions,

such as expressions for concatenating strings and for

performing arithmetic operations. You can use them to

create simple expression-based columns.

Practice

Let's create a calculated column that shows the customer's

full name:

1.Double-click the \Source\Practice\Adventure Work.pbix file

to open it in Power BI Desktop.

2.In the left black navigation bar, click the Data View tab to

open the Data view that lets you browse the content of the

tables in the model.

3.In the Fields list on the right, click the DimCustomer table

to select it. In the data preview grid that shows the data in

the table, scroll to the right and observe that the table has

FirstName and LastName columns, but it doesn't have a

column for the customer's full name. If you have two or more

customers with the same first name, the report will group

them together. This could be avoided by using the

customer's full name on the report.

4.In the Modeling bar, click the New Column button. This

adds a new column named "Column" to the end of the table

and activates the formula bar.

5.In the formula bar (only available in the Data View and

Report View tabs), enter this formula

(see Figure 1.3):

FullName = DimCustomer[FirstName] & " " & DimCustomer[LastName]

Figure 1.3 Calculated columns are evaluated for each table

row and their results are persisted.

6.Press Enter or click the checkmark button to the left of the

formula bar.

Analysis

This formula defines a calculated column called FullName.

Then, the DAX expression uses the concatenation operator to

concatenate the FirstName and LastName columns in the

DimCustomer table and to add an empty space in between

them. As you type, AutoComplete helps you with the formula

syntax, although you should also follow the syntax rules,

such as that a column reference must be enclosed in square

brackets.

Output

Once you commit the formula, Power BI evaluates the

expression and adds the calculated column as a last column

in the table. Power BI propagates the formula to all rows in

the DimCustomer table. Power BI adds the FullName field to

the DimCustomer table in the Fields pane and prefixes it with

a special fx icon so you can quickly tell the calculated

columns apart.

NOTE What's the difference between a column and a field anyway? Besides

physical columns, a table in the Fields pane can include additional fields, such as

calculated columns, measures, groups and bins. For the most part, however, you

can refer to columns and fields interchangeably.

1.(Optional) Click the Report View tab in the navigation bar.

Create a visual that uses the DimCustomer[FullName]

column (or refer to the Calculated Column visual in

\Source\Intro\Adventure Works).

2.Press Ctrl+S (or File -> Save) to save the Adventure Works

file. Remind yourself to use this file from this point forward

for practices.

1.2.2 Creating a Quick Measure

Quick measures are Power BI prepackaged DAX measures for

common analytical requirements, such as time calculations,

aggregates, and totals. Quick measures are a great way to

get you started with common DAX measures and learn DAX

along the way.

Practice

Suppose you want to implement a running sales total across

years.

1.Right-click the FactResellerSales table in the Fields pane

and then click "New quick measure". Alternatively, right-click

FactResellerSales[SalesAmount] in the Fields pane and then

click "New quick measure".

2.In the "Quick measures" window, expand the Calculation

drop-down. Observe that Power BI supports various quick

measures.

3.Select "Running total" under the Totals section (see Figure

1.4).

Figure 1.4 Power BI supports various quick measures to

meet common analytical requirements.

4.Drag the FactResellerSales[SalesAmount] field to the "Base

value" area. Drag the DimDate[CalendarYear] to the Field

area. Click OK.

Analysis

Power BI adds a new "SalesAmount running total in

CalendarYear" field to the FactResellerSales table in the

Fields pane.

1.Make sure that the Report View tab or the Data View tab is

selected (you can't see the measure formula in the Model

View tab).

2.Double click this field in the Fields pane. Rename it to

SalesAmount RT.

3.Notice that the formula bar shows the DAX formula behind

the measure:

SalesAmount RT =

CALCULATE(

SUM('FactResellerSales'[SalesAmount]),

FILTER(

ALLSELECTED('DimDate'[CalendarYear]),

ISONORAFTER('DimDate'[CalendarYear], MAX('DimDate'[CalendarYear]), DESC)

))

This formula uses the CALCULATE function to overwrite the

context of the expression passed as a first argument.

Specifically, the second argument uses the FILTER function to

filter the DimDate table to return only dates that are before

than or equal to the current year on the report. It does so by

using the DAX ISONORAFTER function. When the third

argument of this function specifies a descending order, it

compares the second argument to the first, and returns

TRUE if the second argument is less than or equal to the

first. So, if the report year is 2012, the FILTER function will

return all dates from DimDate whose year is less than or

equal to 2012.

TIP Love it or hate it, the formula bar is the only editor Microsoft provided to work

with formulas of calculated columns and measures. If you hate it, I'll show you in

the "Queries" part of this book how you can create and test measures outside

Power BI Desktop using the DAX Studio community tool. If you love it, take a look

at these keyboard shortcuts to get the most out of it

(https://docs.microsoft.com/power-bi/desktop-formula-editor).

Once you create the quick measure, it's just like any explicit

DAX measure. You can rename it or use it on your reports.

However, you can't go back to the "Quick measures" window.

To customize the measure, you must make changes directly

to the formula, so you still need to know some DAX.

Output

Let's create a report to test the new measure (or refer to the

Quick Measure report in \Intro\Adventure Works.pbix file).

1.Add a Table visual to the report with the

DimDate[CalendarYear] and FactReseller Sales [SalesAmount]

fields in the Values area. To prevent Power BI from

summarizing CalendarYear by default since it's a numeric

https://docs.microsoft.com/power-bi/desktop-formula-editor

field, expand the drop-down next to CalendarYear in the

Values area and select "Don't summarize".

TIP Some numeric fields, such as CalendarYear, CalendarQuarter, shouldn't be

summarized at all as doing so produces non-sensical results. To tell Power BI not

to summarize a numeric field again, select the field in the Fields page, click the

Modeling ribbon, expand the Default Summarization dropdown, and select "Don't

summarize". This removes the sigma (∑) icon in the Fields pane in front of the

field to indicate that the field won't be summarized by default.

2.Add FactResellerSales[SalesAmount RT] field to the Table

visual. Notice that it accumulates across years, as shown in

Figure 1.5.

Figure 1.5 The quick measure accumulates sales over

years, and it's produced by the "Running total" quick

measure.

1.2.3 Analyzing a DAX Query

In this practice, you'll intercept the DAX query behind a

report visual in order to analyze its execution time and to see

the actual query statement. Power BI Desktop has a

Performance Analyzer feature for this purpose.

Practice

Start by enabling Performance Analyzer.

1.In Power BI Desktop, click the View ribbon and check the

Performance Analyzer setting. This will open the Performance

Analyzer pane.

2.Click Start Recording in the Performance Analyzer pane.

Once you start recording, any action that requires refreshing

a visual, such as filtering or cross-highlighting, will populate

the Performance Analyzer pane. You'll see the statistics of

each visual logged in the load order with its corresponding

load duration.

3.You can click the "Refresh visuals" link in Performance

Analyzer to refresh all visuals on the page and capture all

queries. However, once you are in a recording mode, every

visual adds a new icon to help you refresh only that visual. To

practice this, hover on the Table visual you authored in the

last practice and click the "Refresh this visual" icon that will

appear below the visual.

Figure 1.6 Use the Performance Analyzer statistics to

capture the query duration.

Output

Next, let's examine the captured duration statistics (all

numbers are in milliseconds).

 DAX query - The length of time to execute the query.

 Visual display - How long it took for the visual to render on

the screen after the query is executed.

 Other – This is the time that the visual spent in other

tasks, such as preparing queries, waiting for other visuals

to complete, or doing some other background processing.

1.Click the "Copy query" link. Click Stop.

2.Open Notepad (or favorite text editor) and paste the query.

You should see this code:

// DAX Query

EVALUATE

TOPN (502,

SUMMARIZECOLUMNS(

ROLLUPADDISSUBTOTAL('DimDate'[CalendarYear], "IsGrandTotalRowTotal"),

"SalesAmount_RT", 'FactResellerSales'[SalesAmount RT],

"SumSalesAmount", CALCULATE(SUM('FactResellerSales'[SalesAmount]))

),

[IsGrandTotalRowTotal], 0,

'DimDate'[CalendarYear], 1)

ORDER BY

[IsGrandTotalRowTotal] DESC, 'DimDate'[CalendarYear]

Analysis

When the user interacts with a report, Power BI Desktop

autogenerates DAX queries and sends them to the Analysis

Services Tabular service that is behind every Power Desktop

instance.

TIP Open the Windows Task Manager (Ctl+Shft+Esc), find Power BI Desktop in

the Processes tab, and expand it. The Microsoft SQL Server Analysis Services

process is the backend Analysis Services Tabular instance that hosts the

Adventure Works model. Every time you open a new Power BI Desktop instance

and load a file, Power BI spins a new Tabular process, so you could have several

running in the background.

You can capture and analyze these queries, such as to find

which query slows down the report. Compared to almost a

second to refresh the visual, the query took only 78

milliseconds, so it doesn't warrant further performance

optimization.

1.3 Summary

In this lesson, I introduced you to DAX and emphasized its

role as a programming language in the Microsoft BI platform.

You learned how to create basic calculated columns and

measures, and how to capture DAX queries that Power BI

generates when you interact with a report. The next lesson

will provide a quick overview of the Adventure Works model

that you'll be using throughout this book.

Lesson 2

Exploring the Model

As I explained in the previous lesson, you can use DAX to

extend Power BI, Power Pivot, and Analysis Services models.

Power BI Desktop is the Microsoft premium modeling tool for

self-service BI. Packed with features, Power BI Desktop is a

free tool that you can download and start using immediately

to gain insights from your data.

Since you'll be using the Adventure Works sample model

throughout this book, it would be worthwhile to get familiar

with it. This lesson walks you through its structure and

introduces fundamental data modeling concepts, including

schemas and relationships.

2.1 Data Modeling Fundamentals

Power BI organizes data in tables, like how Excel allows you

to organize data into Excel lists. Each table consists of

columns, also called fields. Data can be imported (cached) in

tables or left in the original data source. When data is left at

the data source, Power BI has a special mechanism called

DirectQuery to connect to the data source. When it does this,

it converts DAX queries to native queries that the data

source understands. Not all data sources support

DirectQuery and Direct Query doesn't support all DAX

functions.

NOTE DirectQuery has DAX limitations which are described in more detail in the

"Using DirectQuery in Power BI" article at https://docs.microsoft.com/power-

bi/desktop-directquery-about. The Adventure Works model has all its data

imported so you don't need to worry about these limitations.

2.1.1 Understanding Schemas

If all the data is provided to you as just one table, then you

could count yourself lucky and skip this section altogether.

Chances are, however, that your model might import

multiple tables from the same or different data sources. This

requires learning some basic database and schema

concepts. The term "schema" here is used to describe the

table definitions and how tables relate to each other. I'll keep

the discussion light on purpose to get you started with data

modeling as fast as possible.

NOTE Having all data in a single table might not require modeling, but it isn't a

best practice. Suppose you initially wanted to analyze reseller sales and you've

got a single dataset with columns such as Reseller, Sales Territory, and so on.

Then you decide to extend the model with direct sales to consumers to

consolidate reporting that spans now two business areas. Now you have a

problem. Because you merged business dimensions into the reseller sales

dataset, you won't be able to slice and dice the two datasets by the same lookup

tables (Reseller, Sales Territory, Date, and others). In addition, a large table might

strain your computer resources as it'll require more time to import and more

memory to store the data. At the same time, a fully normalized schema, such as

having SalesOrderHeader and SalesOrderDetails tables, is also not desirable

because you'll end up with many tables and the model might become difficult to

understand and navigate. When modeling your data, it's important to find a good

https://docs.microsoft.com/power-bi/desktop-directquery-about

balance between business requirements and normalization, and that balance is

the star schema.

Understanding star schemas

For a lack of better terms, I'll use the dimensional modeling

terminology to illustrate the star schema (for more

information about star schemas, see

http://en.wikipedia.org/wiki/Star_schema). Figure 2.1 shows

two schema types. The left diagram illustrates a star

schema, where the ResellerSales table is in the center. This

table stores the history of the Adventure Works reseller

sales, and each row represents the most granular

information about the sale transaction. This could be a line

item in the sales order that includes the order quantity, sales

amount, tax amount, discount, and other numeric fields.

Dimensional modeling refers to these tables as fact tables.

As you can imagine, the ResellerSales table can be very long

if it keeps several years of sales data. Don't be alarmed

about the dataset size though. Thanks to the state-of-the art

underlying storage technology, your Power BI data model

can still import and store millions of rows!

Figure 2.1 Power BI models support both star and snowflake

schema types, but the star schema is recommended.

http://en.wikipedia.org/wiki/Star_schema

The ResellerSales table is related to other tables, called

dimension or lookup tables. These tables provide contextual

information to each row stored in the ResellerSales table. For

example, the Date table might include date-related fields,

such as Date, Quarter, and Year columns, to allow you to

aggregate data at day, quarter, and year levels, respectively.

The Product table might include ProductName, Color, Size

fields, and so on.

The reason why your data model should have these fields

in separate lookup tables, is that, for the most part, their

content doesn't need a historical record. For example, if the

product name changes, this probably would be an in-place

change. By contrast, if you were to continue adding columns

to the ResellerSales table, you might end up with

performance and maintenance issues. If you need to make a

change, you might have to update millions of rows of data as

opposed to updating a single row. Similarly, if you were to

add a new column to the Date table, such as Fiscal Year,

you'll have to update all the rows in the ResellerSales table.

Are you limited to only one fact table with Power BI?

Absolutely not! For example, you can add an InternetSales

fact table that stores direct sales to individuals. In the case

of multiple fact tables, you should model the fact tables to

share some common lookup tables so that you could match

and consolidate data for cross-reporting purposes, such as to

show reseller and Internet sales side by side and grouped by

year and product. This is another reason to avoid a single

monolithic dataset and to have logically related fields in

separate tables (if you have this option). Don't worry if this

isn't immediately clear. Designing a model that accurately

represents requirements is difficult even for BI pros, but it

gets easier with practice.

NOTE Another common issue that I witness with novice users is creating a

separate dataset for each report, e.g. one dataset for a report showing reseller

sales and another dataset for a report showing direct sales. Like the "single

dataset" issue I discussed above, this design will lead to data duplication and

inability to produce consolidated reports that span multiple areas. Even worse

would be to embed calculations in the dataset, such as calculating Profit or Year-

to-Date in a SQL view that is used to source the data. Like the issue with defining

calculations in a report, this approach will surely lead to redundant calculations or

calculations that produce different results from one report to another.

Understanding snowflake schemas

A snowflake schema is where some lookup tables relate to

other lookup tables but not directly to the fact table. Going

back to Figure 2.1, you can see that product categories are

kept in a Category table that relates to the Product table and

not directly to the ResellerSales table. One strong motivation

for snowflaking is that you might have another fact table,

such as SalesQuota, that stores data not at a product level

but at a category level. If you keep categories in their own

Category table, this design would allow you to join the

Category lookup table to the SalesQuota table, and you'll still

be able to have a report that shows actual and budget data

grouped by category (and any other shared dimension

tables).

Power BI supports snowflake schemas just fine. However, if

you have a choice, you should minimize snowflaking when

it's not needed. This is because snowflaking increases the

number of tables in the model, making it more difficult for

other users to understand it. If you import data from a

database with a normalized schema, you can minimize

snowflaking by merging snowflaked tables. For example, you

can use a SQL query that joins the Product and Category

tables. However, if you import text files, you won't have that

option because you can't use SQL. Instead, you can handle

denormalization tasks in the Power Query, or by adding

calculated columns that use DAX expressions, such as by

adding a column to the Product table to look up the product

category from the Category table. Then you can hide the

Category table.

To recap this schema discussion, you can view the star

schema as the opposite of its snowflake counterpart. While

the snowflake schema embraces normalization as the

preferred designed technique to reduce data duplication, the

star schema favors denormalization or data entities and

reducing the overall number of tables, although this process

results in data duplication (a category is repeated for each

product that has the same category). Denormalization (star

schemas) and BI go hand in hand. That's because star

schemas reduce the number of tables and required joins.

This makes your model faster and more intuitive.

2.1.2 Exploring Schemas

Let's take a moment to explore the schema of the Adventure

Works data model in Power BI Desktop. The Adventure Works

model imports several tables from the sample

AdventureWorksDW database which is designed as a data

warehouse database and consists of several fact and

dimension tables.

Practice

You can use the Model View tab to a see a graphical diagram

showing how tables relate to each other at a glance.

1.In Power BI Desktop, click the Model View tab in the left

navigation bar.

2.Notice that the "All tables" tab shows all tables in the

model. However, as the number of tables grow, it becomes

difficult to analyze the diagram, so I created three other

layouts that show subsets of the schema.

TIP A layout helps you analyze a subset of the model schema. You can create a

new layout by adding a new tab in the Model View diagram. Then drag a table

from the Fields pane. To add related tables, right-click the table you added in the

Fields pane and click "Add related tables".

3.Click the Reseller Sales tab. Notice that the

FactResellerSales table is surrounded by five dimension

tables, forming a typical star schema.

4.In the Fields pane, right-click the DimProduct table and

click "Add related tables". Power BI adds the

DimProductSubcategory table because it's related to

DimProduct.

5.In the Fields pane, right-click the DimProductSubcategory

table and click "Add related tables". Power BI adds the

DimProductCategory table because it's related to

DimProductSubcategory.

6.(Optional) Explore the Internet Sales and Sales Quotas

diagrams.

Analysis

The Adventure Works model imports 11 tables from the

AdventureWorksDW SQL Server database. Most tables form

star schemas, with a fact table surrounded by related

dimension tables. There is some snowflaking, such as in the

case of DimProduct, DimProductSubcategory, and

DimProductCategory. I've decided to leave the original table

names so you can quickly see which tables are fact tables

(prefixed with "Fact") and dimension tables (prefixed with

"Dim"). In real life, you should consider renaming tables and

columns to make them more user friendly.

TIP When it comes to naming conventions, I like to keep table and column names

as short as possible so that they don't occupy too much space in report labels. I

prefer camel casing, where the first letter of each word is capitalized.

I also prefer to use a plural case for fact tables, such as ResellerSales, and a

singular case for lookup (dimension) tables, such as Reseller. You don't have to

follow this convention, but it's important to have a consistent naming convention

and to stick to it. While I'm on this subject, Power BI supports identical column

names across tables, such as SalesAmount in the ResellerSales table and

SalesAmount in the InternetSales table. However, it might be confusing to have

fields with the same names side by side in the same visual unless you rename

them. Power BI supports renaming labels in the visual (just double-click the field

name in the Visualizations pane). Or, you can rename them in the Fields pane by

adding a prefix to have unique column names across tables, such as

ResellerSales Amount and Internet SalesAmount. Or, you can create DAX measures

with unique names and then hide the original columns.

2.1.3 Exploring Fact Tables

Next, let's explore the data in some of the tables that you'll

be using for subsequent practices.

Practice

You can use the Data View tab to browse the table data.

1.In Power BI Desktop, click the Data View tab in the left

navigation bar.

2.In the Fields pane, click FactInternetSales to select it. This

table stores sales to individual customers, such as when

customers place orders on the Adventure Works website.

Each row in the table represents a line item in the customer

order. For example, if the customer ordered two items, the

corresponding order will have two order lines which will be

represented by two rows in FactInternet Sales. The

SalesOrderNumber column captures the order number and

the SalesOrderLine Number column stores the line sequence

number.

Analysis

Notice that the first eight columns are suffixed with "Key".

They relate to the corresponding dimension tables to give

additional context to each row, such as what product was

sold, when it was sold, which customer ordered it, and so on.

Notice that there are a few numeric fields that are typical for

a sales transaction, such as SalesAmount, OrderQuantity,

TaxAmt, and DiscountAmount. The dimensional methodology

refers to such fields as facts. They are extremely useful

because they can be aggregated across the related

dimensions, such as to summarize the sales amount by

product to find the top 10 bestselling products.

Similarly, the FactResellerSales table represents sales from

retail stores. It has a very similar schema as

FactInternetSales but there are differences in the dimension

keys. For example, the Customer Key column is missing

because are no individual customers placing orders. Instead,

there is a ResellerKey column to designate the reseller that

was associated with the sale. There is also an Employee Key

column to associate a salesperson with the order.

Finally, the third fact table, FactSalesQuota, captures the

quarterly sales quota that is assigned to each salesperson so

that you can analyze actual versus budget sales.

2.1.4 Exploring Dimension Tables

A dimension (lookup) table gives context to facts stored in a

fact table and let you analyze them in many ways, such as

for analyzing sales by year, quarter, and month. Each field in

a dimension table is a candidate for exploring facts in the

related fact tables by this field.

Practice

Let's look at a few dimension tables:

1.Make sure that the Data View tab is selected in the left

navigation bar.

2.Almost every model has a Date table because time analysis

is so common. In the Fields pane, select the DimDate table.

Analysis

A dimension table typically has a column that uniquely

identifies each row. In DimDate, this column is DateKey, but

the Date column can serve this purpose too.

NOTE The original column name in the AdventureWorksDW database was

FullDateAlternateKey. However, because we'll use this column a lot in DAX

formulas, I renamed it to Date. You can right-click DimDate and click Edit Query

to open Power Query and see what transformations are made to a table, including

renaming columns.

The rest of the columns are typical for date tables. Adventure

Works has a fiscal calendar, which explains the

FiscalSemester, FiscalQuarter, and FiscalYear columns. It also

supports multiple languages and it has corresponding

columns that store the language translations. For example,

EnglishMonthName stores the name of the month in English.

There is more to date tables that you need to know but I'll

stop here for now.

The rest of the dimension tables follow the same pattern.

For example, the CustomerKey column in DimCustomer

uniquely identifies each customer. Such columns are called

surrogate keys in dimensional modeling. The "alternate key"

columns, such as CustomerAlternateKey, are called business

keys and they typically correspond to identifiers in the

source systems. For example, the first customer listed, Larry

Gill, is probably identified as AW00011602 in the Adventure

Works ERP system. However, there could be changes to

Larry, such as when he moves to a new address. The source

system might simply overwrite Larry's record and the data

warehouse could follow this pattern (dimensional modeling

refers to overwrites as Type 1 changes). Of course, such

overwrites "lose" historical changes.

But other changes could be important for data analytics

and need to be preserved in the data warehouse. Suppose

you do analysis by cities and Larry moved from New York to

Atlanta. If his address is overwritten, his whole sales history

will be contributed to Atlanta which can inflate the historical

Atlanta sales. If this is problematic, one option is to add a

new row for Larry in DimCustomer that is associated now

with his new geography. Dimensional modeling refers to this

type of change as a Type 2 change. However, because

CustomerAlternateKey is not unique anymore, a system-

generated CustomerKey was introduced as a unique

(surrogate) key.

2.2 Relationship Fundamentals

Once you have multiple tables, you need a way to relate

them. If two tables aren't related, your model won't

aggregate data correctly when you use both tables on a

report. Because relationships are very important to Power BI

data modeling and DAX, let's quickly cover their

fundamentals.

Figure 2.2 The Date column (primary key) in the Date table

is related to the matching OrderDate column (foreign key) in

the ResellerSales table.

2.2.1 Understanding Relationships

In order to relate two tables, there must be data

commonalities between the two tables. This isn't much

different than joins in relational databases, such as Microsoft

Access or SQL Server. For example, you won't be able to

analyze sales by product if there isn't a common column

between the Reseller Sales and Date tables that ties a date to

a sale (see Figure 2.2).

Auto-detecting relationships

If the underlying data source has relationships (referential

integrity constraints) defined, Power BI Desktop will detect

and carry them to the model (this is controlled by the

"Import relationships from data sources" setting in File ->

Options and setting -> Options -> Data Load under the

Current File session). If not, Power BI is capable of auto-

detecting relationships using internal rules (this is controlled

by the "Autodetect new relationships after data is loaded"

setting in the same section).

Of course, you can also create relationships manually. It's

important to understand that your data model is layered on

top of the original data. No model changes affect the original

data source and its design. You only need rights to read from

the data source so that you can import the data you need.

Understanding related columns

You'll typically create a relationship between a fact table and

a dimension table. A relationship requires common columns

in each table. Usually, the dimension table will have a

column that uniquely identifies each row in a table. Such a

column is called a primary key. For example, the Date

column uniquely identifies each row in the Date table and no

other row has the same value. An employee identifier or an

e-mail address can be used as a primary key in an Employee

table. To join Date to ResellerSales, in the ResellerSales

table, you must have a matching column, which is called a

foreign key. For example, the OrderDate column in the

ResellerSales table is a foreign key.

A matching column means a column in the fact table that

has matching values in the lookup table. The column names

of the primary key and foreign key don't have to be the same

(values are important, not names). For example, if the

ResellerSales table has a sale recorded on January 1,

2015, there should be a row in the Date table with a date in

the Date column of January 1, 2015. If there isn't, the data

model won't show an error, but all the sales that don't have

matching dates in the Data table would appear under an

unknown (blank) value in a report that groups ResellerSales

data by some column in the Date table. Typically, a fact table

has several foreign keys, so it can be related to different

lookup tables.

NOTE Relationships from fact tables to the same lookup table don't have to use

the same column. For example, ResellerSales can join Date on the Date column

but InternetSales might join it on the DateKey column, for example in the case

where there isn't a column of a Date data type in InternetSales. If a column

uniquely identifies each row, the lookup table can have different "primary key"

columns.

As I mentioned, you'll join a dimension (lookup) table to a

fact table and the dimension table will have a primary

(unique) key that you'll relate to the corresponding column in

the fact table. But a primary key is not required. For

example, you might have Invoices and Orders tables, where

the Orders table has the invoice number, which may not be

unique in the Invoices table (an invoice can have several

lines). However, you can still join these two tables unless you

run into some of the Power BI relationship limitations, such

as that redundant relationship paths are not allowed. For

example, A -> C and A -> B -> C form redundant

relationships between tables A and C.

About relationship cardinality

The relationship cardinality reflects the number of rows in

one table that are associated with rows in the related table.

Power BI uses the relationship carnality for data validation.

Notice that in Figure 2.2, the number 1 is shown on the left

side of the relationship towards the Date table and an

asterisk (*) is shown next to the ResellerSales table. This

denotes a one-to-many cardinality. To understand this better,

consider that one row (one date) in the Date table can have

zero, one, or many recorded sales in ResellerSales, and one

product in the Product table corresponds to one or many

sales in Reseller Sales, and so on. The important word here is

"many".

Although not a common cardinality, Power BI also supports

a one-to-one relationship type. For example, you might have

Employee and SalesPerson tables in a snowflake schema,

where a salesperson is a type of an employee and each

salesperson relates to a single employee. By specifying a

one-to-one relationship between Employee and SalesPerson,

you're telling Power BI to check the data cardinality and

show an error if the one-to-many relationship is detected on

data refresh. A one-to-one relationship also brings additional

simplifications when working with DAX calculations, such as

to let you interchangeably use the DAX RELATED and

RELATEDTABLE functions.

Lastly, Power BI supports a many-to-many relationship

cardinality but don't confuse it with the many-to-many

relationship type that typically requires a bridge table and

it's discussed in the "Many-to-many Relationships" lesson.

The Orders-Invoices relationship that I just mentioned is an

example of a many-to-many cardinality because the invoice

number is not unique in the Invoices table.

About relationship cross filter direction

While the relationship cardinality is only useful to validate

the expected association between rows in two tables, a more

important characteristic is the filter direction. Also note that

in Figure 2.2, there's an arrow indicator pointing toward the

ResellerSales table. This indicates that this relationship has a

single cross filtering direction between the Date and Reseller

tables. In other words, the ResellerSales table can be

analyzed using the Date table, but not the other way around.

For example, you can have a report that groups sales by

any of the fields in the Date table. However, you can't

aggregate dates, such as counting them, by a field in the

ResellerSales table, which is probably meaningless anyway.

That said, there are valid business requirements that can

benefit from bidirectional relationships and we'll explore

them later in this book.

NOTE Why not have bidirectional relationships by default for maximum

flexibility? Bidirectional relationships may also result in redundant paths which

Power BI Desktop will detect and disallow. As a best practice, Power BI starts with

a unidirectional model, but you can turn on bidirectional cross filtering only when

needed.

Active and inactive relationships

A standing limitation in Power BI is that it only supports one

active relationship between two tables. An active relationship

is a relationship that Power BI follows to automatically

aggregate the data between two tables when both tables are

used in a report. Glancing back to Figure 2.2, the

relationship Reseller Sales[OrderDate] -> Date[Date] is the

only relationship between the two tables and it's active

because it has a solid line. You can also double-click the

relationship and examine the "Make this relationship active"

flag. Consequently, when you create a report that slices

InternetSales by Date, Power BI automatically aggregates

sales by the order date associated with each sale.

What if you want to give the user an option to analyze

sales by ship date or due date? Power BI will let you create

these relationships, but it will make them inactive and they

will have dotted lines. Power BI will also deactivate

relationships when it discovers redundant relationships, such

as attempting to relate tables A -> B -> C and A -> C.

Although Power BI doesn't have user interface to let the end

user traverse inactive relationships, they are still useful

because you can use DAX to navigate them

programmatically.

That's all you need to know about relationships for now.

Let's take a moment to explore the existing relationships in

the Adventure Works model.

2.2.2 Exploring Relationships

As it stands, the Adventure Works model has 11 tables.

Because the AdventureWorksDW SQL Server database has

foreign keys defined, Power BI has detected them and

created corresponding relationships.

Exploring the Reseller Sales diagram

Let's examine the Reseller Sales diagram in the Model View

tab. Notice that the FactResellerSales table is related to five

dimensions: DimReseller, DimDate, DimSalesTerritory,

DimEmployee, and DimProduct. All the relationships are

many-to-one from FactResellerSales to the corresponding

dimensions. All the relationships are unidirectional which is

indicated by the arrow pointing toward FactResellerSales.

Consequently, you can aggregate FactResellerSales by any

dimension.

The relationships between FactResellerSales and DimDate

deserve more attention. Hover on the relationship that has a

solid line (or double-click it to open its properties). This is an

active Fact Reseller Sales[OrderDateKey] -> DimDate[Date]

relationship. When you hover on it, Power BI shows the

related columns. The other two relationships are inactive

because they have dotted lines.

NOTE AdventureWorksDW uses a "smart" integer primary key for the Date table

in the format YYYYMMDD. This is a common practice for data warehousing, but

it's not required and probably redundant since FactResellerSales has date

columns. For example, you can recreate the relationship between

FactResellerSales[OrderDate] and DimDate[Date] columns and remove the

OrderDateKey column.

There is another inactive relationship between

DimSalesTerritory and DimEmployee. Power BI has

deactivated it because there is already an active relationship

between FactResellerSales and DimEmployee. If the user

analyzes FactResellerSales by DimEmployee, should Power BI

use the direct relationship or go through DimSalesTerritory?

The second scenario could be useful if you want to analyze

sales only by employees who are assigned to a sales

territory. However, because as it stands Power BI can't

prompt the user which relationship to use, Power BI has

deactivated DimEmployee[SalesTerritoryKey] ->

DimSalesTerritory[SalesTerritoryKey].

Finally, the snowflaked DimProduct,

DimProductSubcategory, and DimProductCategory tables are

related. Such relationships are sometimes called cascading

relationships and Power BI supports them. For example, you

can analyze FactResellerSales by DimProductCategory. When

performing this analysis, Power BI will traverse the

relationships among these three tables before it gets to

FactResellerSales.

Exploring the Internet Sales diagram

The Internet Sales diagram is much simpler.

FactInternetSales is related to four dimensions: DimProduct,

DimDate, DimCustomer, and DimSalesTerritory. All

relationships are unidirectional and many-to-one. Like

FactResellerSales, FactInternetSales has one active

relationship to DimDate; the other two are inactive.

Exploring the Sales Quota diagram

This layout is even simpler. FactSalesQuota relates to

DimEmployee and DimDate with unidirectional, many-to-one

relationships.

NOTE While analyzing the schema, note that the three fact tables share some

dimensions. Dimensional modeling refers to such common dimensions as

conformed. This is very powerful because it allows you to have measures from

different fact tables sliced by shared dimensions in the same visual! For example,

you can summarize FactReseller Sales[SalesAmount] and

FactInternetSales[SalesAmount] by any field in DimDate, DimProduct, and

DimSalesTerritory side by side in one visual. Or, you can compare salesperson's

actuals (FactResellerSales) versus budget (FactSalesQuota) by DimDate and

DimEmployee.

Practice

Let's see what happens when you attempt to analyze data in

one table by an unrelated table.

1. Add a Table visual (or refer to the Unrelated Tables report

in the \Source\Intro\Adventure Works).

2.Bind it to DimEmployee[FirstName] and

FactInternetSales[SalesAmount]. Compare your results with

Figure 2.3.

Figure 2.3 Analyzing by an unrelated table produces

repeating values.

Analysis

The report repeats the grand total for each employee. This is

the behavior you'll get if there's no relationship between the

two tables. If Internet sales should aggregate by employee,

you must somehow define a relationship to DimEmployee to

resolve this issue.

2.3 Summary

One of the most prominent strengths of Power BI is that it

supports flexible data models which could include multiple

fact and dimension tables. In this lesson, you explored how

the Adventure Works model has star and snowflake schemas,

and how it uses relationships to relate tables. Having laid the

necessary foundation, it's now time to learn a bit more about

how Power BI stores and processes data.

Lesson 3

Understanding Storage

Our overview of data modeling fundamentals won't be

complete until you learn how Power BI stores data in the

model. It's the storage engine that gives your Power BI

reports excellent performance even with millions of rows. It's

important to have a least a high-level understanding of the

storage engine to better understand how DAX formulas work.

In addition, your model storage design might affect DAX

performance.

This lesson introduces you to xVelocity (also known as

VertiPaq) which powers the three implementations of

semantic layers in the Microsoft BI platform: Power BI, Power

Pivot and Analysis Services Tabular. It will also teach you how

to analyze storage of your data model, such as to

understand what columns take up the most memory.

3.1 Understanding the Storage Engine

When Microsoft started work on Power Pivot, they realized it

needed a new type of storage that would be more suitable

for data analytics. To provide the best storage performance,

Microsoft implemented a proprietary in-memory store called

VertiPaq, which was later rebranded as xVelocity.

3.1.1 Introducing xVelocity

xVelocity is an in-memory database, which means it loads

data in the computer main memory, which is the fastest

storage medium. So, while you save your Power BI Desktop

file to disk for durable storage, all data in this file is

unpacked and loaded in memory from where all reporting

queries are answered.

Understanding columnar storage

As the original VertiPaq name suggests, the storage engine

stores and compresses data vertically by columns to pack as

much data as possible in order to minimize the storage

footprint. Column-based storage fits BI like a glove because

data is typically analyzed by columns. And, the lower the

data cardinality (that's the more repeating values a column

has), the higher its compression rate is. Figure 3.1 shows a

hypothetical table containing some sales data.

Examining the data, we see that across all rows the Date

column has only two unique values, ProductName has seven,

ProductSubcategory has five, ProductCategory two, and

SalesAmount five. Consequently, the Product Category and

Date columns will compress the most since they have the

most repeating values, while the ProductName column won't

compress as well. Since it's common to have columns with

many repeating values in large datasets, expect a high data

compression ratio (five times or higher). The efficient

compression is the reason why you can pack and analyze

millions of rows on the desktop without running out of

memory.

Figure 3.1 xVelocity compresses columns with many

repeating values well.

Processing queries

When Power BI receives a DAX query, its formula engine

parses the query and creates an execution plan. This

execution plan will likely include many queries for data

retrieval that the formula engine sends in parallel to

xVelocity. Think of xVelocity as a highly efficient memory

scanner. For the most part, all it does is scan the column

values loaded in the computer memory. For example, even if

a DAX query asks for sales for a single product, xVelocity

must go through the following steps:

1.Scan the entire ProductName and SalesAmount columns.

2.Cross-join the two columns to find sales for that product.

3.Aggregate SalesAmount depending on the requested

aggregation type (SUM, AVG, or other).

Therefore, xVelocity performs very well when the query

requests a few columns which is typical for data analytics,

such as to summarize sales by product (only two columns

involved). But it might not be that efficient as reports get

more granular and the number of columns and data volumes

increase, such as to produce a detailed report that shows the

customer's first name, last name, email, phone number, and

so on.

The more columns the report requests, the more columns

xVelocity needs to scan and cross join. Although its memory

storage goes a long way to crunch data efficiently, it has its

limits. You might not see much performance degradation

with the few thousand rows in the Adventure Works model,

but with millions of rows it will be probably more efficient to

produce such detail reports directly from a relational

database, such as SQL Server or Oracle, that retrieves data

by rows and not columns. Keep this in mind and choose the

right tool for the reporting task at hand.

3.1.2 Understanding Column Data Types

A table column has a data type associated with it. When

Power BI connects to the data source, it attempts to obtain

the column data type from the data provider and then maps

it to a data type it supports.

Understanding supported data types

Table 3.1 lists the xVelocity data types (Power Query has a

few more types that don't have equivalents).

Table 3.1 This table shows the column data types supported by

xVelocity.

Query Data

Type

Storage Data

Type

Description

Text String A Unicode character string with a max length of 268,435,456

characters

Decimal Number Decimal Number A 64 bit (eight-bytes) real number with decimal places

Fixed Decimal

Number

Fixed Decimal

Number

A decimal number with four decimal places of fixed precision useful

for storing currencies.

Whole Number Whole number A 64-bit (eight-bytes) integer with no decimal places

Date/Time Date/Time Dates and times after March 1
st

, 1900

Date Date Just the date portion of a date

Time Time Just the time portion of a date

TRUE/FALSE Boolean True or False value

Binary Binary data type Blob, such as file content (supported in Query Editor but not in

the data model)

Reviewing and changing the column data type

To review the column data type in Power BI Desktop, click the

Data View tab, select the table column, and examine the

"Data type" dropdown in the Modeling ribbon. You can use

this dropdown to change the column data type. Changing the

column data type changes how the data is physically stored

in the model. For example, changing from Decimal Number

to Whole Number will remove decimals. You can always

change the data type back to Decimal Number and reimport

the data to restore the precision.

You should review and change the column data type for the

following reasons:

 Data aggregation – You can sum or average only numeric

columns.

 Data validation – Suppose you're given a text file with a

SalesAmount column that's supposed to store decimal

data. What happens if an 'NA' value sneaks into one or

more cells? The query will detect it and might change the

column type to Text. You can examine the data type after

import and detect such issues.

TIP Although you can perform limited validation in DAX, I recommend you

address data quality issues ideally in the data source. When this is not an option,

tackle them in Power Query because it has the capabilities to remove errors or

replace values. Data should enter your model clean and DAX isn't the right tool to

shape and transform the data.

3.2 Exploring Storage

When you browse the data in Power BI Desktop (Data View

tab), there is nothing that indicates that data is stored in

columns. In fact, you might be tricked into believing that

data is stored in rows as in a relational database. In this

practice, you'll use the VertiPaq Analyzer community tool to

gain more understanding about how the data is stored in the

Adventure Works model.

3.2.1 Getting Started with Vertipaq Analyzer

The VertiPaq Analyzer is implemented as an Excel Power

Pivot model. It can collect storage statistics from the three

Microsoft products that use xVelocity: Power BI, Power Pivot,

and Analysis Services Tabular. The steps that follow are

specific to analyzing storage of Power BI Desktop models.

Finding how to connect to the model

Recall from Lesson 1 that a background Analysis Services

Tabular instance hosts your Power BI Desktop model.

Unfortunately, each time you restart Power BI Desktop, it

creates a new instance that listens on a different network

port. As a first step, you need to determine that port and the

easiest way to do so is to use DAX Studio.

1.Open Power BI Desktop and then open the Adventure

Works.pbix file from the \Source\Practice folder.

2.Open DAX Studio. In the Connect window, choose the

"PBI/SSDT Model" model option and select the Adventure

Works model. Click Connect.

3.Once DAX Studio connects, look at the bottom status bar

and obtain the server name and port. You should see

something like localhost:55892. That's all you need for the

connection string.

Collecting statistics

Next, configure and run the VertiPaq Analyzer.

1.Download the VertiPaq Analyzer from

https://www.sqlbi.com/tools/vertipaq-analyzer/ and unzip it.

For your convenience, I provided the Excel 2013 version in

the \Source\Intro folder.

2.In the Excel Data ribbon, click Manage Data Model to open

the Power Pivot model.

3.In the Power Pivot Home ribbon, click Existing Connections.

Select the SSAS data source and click Edit.

4.In the "Specify a connection string" window, click the Build

button.

5.In the "Data link properties" window, change the Data

Source setting to localhost:<port> and replace <port> with

the actual port number you got from DAX Studio.

6.Expand the "Enter the initial catalog to use" and select the

model name which should be a globally unique identifier

(guid), such as 7a622512-cf0c-4097-a41d-caa62bc88ba4.

7.Press "Test Connection" to test connectivity and if all is

well, press OK. Your connection string should like something

like this:

Provider=MSOLAP.8;Integrated Security=SSPI;Persist Security Info=False;Initial

Catalog=7a622512-cf0c-4097-a41d-caa62bc88ba4;Data

Source=localhost:55892;Update Isolation Level=2

8.Click Save. Back to the "Existing Connections" window,

click Refresh. Power BI will query specific Analysis Services

data management views (DMV) and load some statistics into

Power Pivot tables.

9.Verify that all tables are successfully refreshed in the status

window and then click Close twice.

10.Finally, close the Power Pivot window to return to Excel.

3.2.2 Analyzing Storage Results

Although it captures much more information than this, I

typically use the VertiPaq Analyzer to determine which tables

and columns take the most storage.

Practice

https://www.sqlbi.com/tools/vertipaq-analyzer/

The first tab (Tables) in the Excel spreadsheet contains useful

summary information.

1.Click the Tables tab in the VertiPaq Analyzer Excel file.

2.Sort the "Columns Total Size" column in descending order

both at table and column levels. Compare your results with

Figure 3.2.

Figure 3.2 Use VertiPaq Analyzer to analyze the data model

storage.

Analysis

The report shows that the table that takes the most storage

is DimCustomer, which has 18,484 rows (see the Cardinality

column). The Table Size column states that the entire table

occupies 4,402,413 bytes (or around 4.5 Mb). Another good

column to examine is "Database Size %" which shows the

table or column storage size as a percentage of the model's

overall size.

You can also see that EmailAddress takes the most space

because it's a text column that has a lot of unique values.

Internally, xVelocity stores all data types as integers but it

needs to encode text values. If you don't need email address

for analysis, you should remove it to save about seven

percent storage.

If you scroll all the way down and examine the "Table Size"

column again, you can see that the entire model takes about

18.5 Mb, of which 3 MB is just the data size (Data Size

column) and 12 MB (Dictionary Size column) are for

additional runtime structures called dictionaries that Power

BI uses to decompress and look up data. The model data size

should correspond roughly to the size of the Adventure

Works.pbix file.

Finally, notice that there are many "LocalDateTable" tables

shown in the table list that add more than six megabytes to

the model size. Where do they come from? By default, Power

BI generates a date table for every date column in every

table it encounters. Power BI generates these tables so you

don't have to add an explicit date table, but they can surely

bloat your model. If you have a date table as the Adventure

Works model does, you can turn off the hidden date tables

by unchecking the "Auto Date/Time" setting in the File ->

Options and settings -> Options, Data Load tab (under

Current Settings). We'll revisit date tables in the "Working

with Date Tables" lesson.

3.3 Summary

In this lesson, you learned how Power BI stores data. Power

BI imports all the data into the xVelocity store: a highly

efficient, in-memory columnar database. The lower the

column cardinality, the higher the chance for that column to

compress well and to take less storage. Currently, Power BI

itself doesn't include storage statistics, but you can use the

VertiPaq Analyzer community tool to analyze the model

storage.

This lesson concludes the introductory part of this book.

Let's dive in DAX and learn how to implement calculated

columns.

PA RT 2

Calculated columns and tables

You can use DAX to extend your model with custom columns

and tables. In this part of the book, you'll learn how to do

this. Previously, you learned the data modeling fundamentals

and how Power BI stores data. Next, you'll learn how to

extend your tables with basic and advanced calculated

columns, including columns for looking up, aggregating, and

filtering data.

You'll find how calculated columns are evaluated and how

to change the evaluation context. And you'll discover how

calculated tables can help you implement role-playing

dimensions, date tables, and summarized tables. Along the

way you'll get introduced to important DAX functions for

relating and filtering data.

When going through the exercises, remember to use your

version of the Adventure Works model, which you should

have saved in the \Source\Practice folder. If you need to refer

to the completed exercises and reports for this part of the

book, you'll find them in the Adventure Works model in the

\Source\Part2 folder included in the book source code.

Lesson 4

Understanding Custom

Columns

In the first lesson, I explained that one of the DAX usage

scenarios is to extend tables with calculated columns. You

practiced creating a simple calculated column that

concatenates the customer's first name and last name. This

lesson examines calculated columns in more detail. You'll

learn how they are evaluated and stored.

More importantly, you'll understand when to use and not

to use calculated columns. You'll also learn about other

approaches for creating custom columns. You'll find the DAX

formulas for this lesson in \Source\Part2\Understanding

Calculated Columns.dax.

4.1 Understanding Calculated

Columns

A calculated column is a table column that uses a DAX

formula for its values. This is conceptually like a formula-

based column added to an Excel list, although DAX formulas

reference columns instead of cells.

4.1.1 Understanding Calculated Column Storage

DAX newcomers are often confused about the difference

between calculated columns and measures and where to use

each. To understand calculated columns better, you need to

understand how they are stored and evaluated.

How are calculated columns stored?

When a column contains a formula, the storage engine

computes its value for each row and saves the results. To use

a techie term, values of calculated columns get

"materialized" or "persisted". The difference is that regular

columns import their values from a data source, while

calculated columns are a byproduct of DAX formulas and

they are evaluated and saved after the regular columns are

loaded. Because of this, the formula of a calculated column

can reference regular columns and other calculated columns.

However, a calculated column can't reference any runtime

conditions, such as to obtain the selected value from a report

filter. Again, this is because the DAX formula is evaluated

after the data is loaded but before report queries are

executed. The DAX formula of a calculated column is

evaluated once for each row in the table and from this point

on its values don't change.

NOTE The storage engine might not compress calculated columns as much as

regular columns because they don't participate in the sorting and re-ordering

algorithm that optimizes the compression. So, if you have a large table with a

calculated column that has many unique values, this column might have a larger

memory footprint than a regular column. Use the Vertipaq Analyzer to analyze

the column storage and compare it with the other implementation approaches

you'll learn in this lesson that might result in less storage.

How are calculated columns updated?

If data is imported, Power BI has everything it needs to

evaluate DAX formulas in calculated columns. If data is not

imported, such as when a table uses DirectQuery to connect

to a SQL Server database, calculated columns are evaluated

on the fly, but not all DAX functions are supported (for

example, time intelligence functions, such as TOTALYTD, are

not supported). Even if the calculated column references

other tables, Power BI has the data and it doesn't need to

reload the table when the column is first created.

Suppose that the data in the underlying data source has

changed. If data is imported, you need to refresh all or some

of the tables in your model to synchronize them with

changes in the data source. Power BI updates calculated

columns, as well as relationships and hierarchies, on refresh.

If the calculated column references only columns in the same

table, it will be updated when the home table is refreshed. If

the calculated column references other tables, it will be

updated when each of the dependent tables is refreshed. In

other words, a calculated column is always in sync with the

data that is currently in the model. But you must refresh the

data to update calculated columns. You can't refresh specific

calculated columns. Power BI refreshes all calculated

columns in a table when it discovers that dependent tables

are updated.

4.1.2 Understanding Evaluation Context

Every DAX formula is calculated in a specific evaluation

context. By "context", we'll mean restrictions that are

implicitly and explicitly applied to the formula to operate on

specific data, such as user-defined filters, relationships

between tables, and explicit filters in formulas. DAX

recognizes two context types: row context and filter context.

Introducing row context

Think of the row context as the "current row" in which the

DAX formula is executed. There are two scenarios that result

in a DAX formula evaluated in the row context:

 Evaluating a calculated column – The row context includes

the values from the columns in the current row. Therefore,

the FullName column you implemented in Lesson 1 returns

the full name of the customer for each row in the table.

 Using an iterator function – Several DAX functions iterate

over table rows, such as FILTER, SUMX, ADDCOLUMNS.

When they iterate a row, they create a row context for that

row.

Although the row context doesn't automatically propagate to

related tables, you can use DAX functions, such as RELATED

and RELATEDTABLE, to propagate it in order to select rows in

other tables that are related to the current row, such as to

look up the product cost from another table.

Introducing filter context

The filter context represents the subset of data in which a

DAX formula operates. For example, the running total

measure you implemented in Lesson 1 produces different

results for each report "cell". It does so because Power BI

evaluates it in the filter context of every cell. Going back to

Figure 1.5, we see that the SalesAmountRT measure

accumulates sales for all years up to and including the year

corresponding to the current cell. In other words, the running

total is evaluated as of a specific year. In this case, the "as

of" year is whatever year corresponds to a given report cell,

but it also could be obtained from a report filter or slicer.

Usually, every report cell has a different filter context that

is inherited from the cell location. However, there are DAX

filter functions, such as CALCULATE that can change the filter

context, and other functions, such as ALL and ALLEXCEPT,

that can ignore it. Irrespective if it's implicit (cell location and

user filters) or explicit (overwritten by DAX functions), the

filter context never affects the row context.

NOTE The DAX documentation differentiates between "query context" (implicit

filters) and "filter context" (explicit filters). To keep things simple, I'll refer to both

types as filter context because they operate in the same way.

The filter context can be empty. For example, the FullName

calculated column has an empty filter context. Because its

formula is evaluated at design time, Power BI can't pass any

report filters to a calculated column, so there is no implicit

filter context. And there is no explicit filter context because

the FullName formula doesn't modify the filter context.

However, even calculated columns can use DAX functions,

such as CALCULATE, that create or modify a filter context.

Therefore, the calculated column's formula can have row and

filter contexts, just like a measure can have both.

4.1.3 Considering Calculated Columns

No matter how comprehensive your data model is it can

probably benefit from custom columns. Let's see when

calculated columns could be useful and when you would

consider other approaches.

When to use calculated columns

In a nutshell, consider a calculated column when you seek to

extend a table with a custom column, and you prefer to use

DAX. Here are a few good examples for using calculated

columns:

 Aggregate data from another table, such as to calculate

the customer overall sales rank.

 Look up a value from a related table if doing so in DAX is

more efficient than other approaches (more on this in the

next section).

 Create buckets for a range of values in a column, such as

Customer Age (0-20, 21-30, and so on).

TIP Although custom table columns could be created in different ways,

sometimes you don't have a choice but to use DAX. Consider a calculated column

when the expression can be evaluated more efficiently with a DAX formula.

Once the calculated column is in place, it can be used just

like a regular column. For example, you can place the

FullName column in the Table visual's Rows or Columns areas

or use it in a report filter or slicer. You can add a calculated

column to the visual's Values area and sum it up (if it's

numeric) or use Count or Discount Count functions (if it's a

text column). Make no mistake though. Although you can

aggregate a calculated column, it's not a measure. When the

calculated column is aggregated, Power BI creates an implicit

measure on top of the calculated column, just like it does

when a regular column is added to the Values area.

When not to use calculated columns

To start with, you can't use a calculated column when the

expression depends on some runtime condition, such as

report filters or identity of the interactive user. For example,

you can't use a calculated column to produce year-to-date

(YTD) sales as of a date specified by the user. When the

formula depends on end user selection, you need a measure

and not a calculated column. A DAX formula may work for

both, but the results and computation are very different. The

output from a calculated column is fixed at design time,

while measures are dynamically calculated at runtime.

There are also cases where other implementation

approaches could be preferable, such as when you need

more complicated expressions that might benefit from

custom SQL. This brings us to the next section that discusses

alternative approaches for implementing custom columns.

4.2 Other Options for Implementing

Custom Columns

Using DAX is not the only way to extend tables with custom

columns. You can introduce custom columns outside the data

model, such as by applying custom SQL (if you retrieve data

from a relational database), or by using Power Query.

4.2.1 Evaluating Implementation Options

Table 4.1 compares three approaches for implementing

custom columns, sorted by their proximity to the data model

(more upstream options first). Ultimately, the

implementation choice depends on your skillset and the task

at hand.

Table 4.1 Comparing three common options for implementing custom

columns.

Characteristics SQL Expression Column Power Query Custom

Column

DAX Calculated

Column

Language SQL (custom query or SQL

view)

M DAX

Evaluation Before the data is loaded

in the model

As the data is loaded in

the model

After data is loaded in

the model

Require table

refresh

Yes Yes No

Level of

transformation

High Low Medium

Storage footprint Regular compression Regular compression May not compress well

SQL expression columns

If you load data from a relational database, you can use a

custom SQL query or SQL views to add expression-based

columns. SQL has been evolving for decades, so you'd be

hard pressed to face a data manipulation or shaping

requirement that you can't meet with SQL. If you know SQL,

not only can you apply the skills you already have, but you'll

gain in performance and delegate data crunching to the

relational database, which is what it’s designed to do.

REAL LIFE In my consulting practice, I always implement SQL views to "wrap"

the tables in a relational database that I need to import in the data model. Sooner

or later, a requirement pops up for an expression-based column, such as to

derive a higher-level grouping from a list of values. Sometimes, these columns

require more involved lookups and delegating this task to the relational database

is usually the best option.

Power Query custom columns

Using Power Query could be a good choice for implementing

basic custom columns, especially when you're new to DAX.

Power Query has its own expression-based language called

"M", but its user interface can often auto-generate the "M"

code so you might be able to avoid learning yet another

language. Consider Power Query especially for cleansing

column values, such as to remove a currency symbol to

make the column numeric. Power Query can also look up

values from another table (in fact, it supports fuzzy

lookups!), but you need to test how much the Power Query

lookups add up to the table refresh time.

Calculated columns

Implementing a calculated column requires knowledge of

DAX. The formula is evaluated at design time and it doesn't

require reloading the data if it's already imported.

Subsequent table refreshes automatically recalculate the

column. I ranked the transformation capabilities as medium

because it's not as powerful as SQL, although it has functions

that are specifically designed for data analytics.

4.2.2 Performing Arithmetic Operations

Creating a custom column that performs some arithmetic

operations for each row in a table is a common requirement.

Although you can use SQL or Power Query to create such

columns, let's implement another DAX calculated column to

create a LineTotal column that calculates the total amount

for each row in the FactResellerSales table by multiplying the

order quantity, discount, and unit price.

Practice

While working on the formula, let's see what happens when

the formula has a wrong column reference.

1.Besides the New Column ribbon button, another way to add

a calculated column is to use the Fields pane but make sure

that the Data View (or Report View) tab in the navigation

page is selected. In the Fields pane, right-click the

FactResellerSales table and then click "New column".

2. In the formula bar, enter the following formula and press

Enter. Notice that I purposely omitted the table name from

the column references to show you that calculated columns

don't have to use fully-qualified column names. In addition,

I've intentionally misspelled the OrderQty column reference

to force an error.

LineTotal = [UnitPrice] * (1-[UnitPriceDiscountPct]) * [OrderQty]

Output

This expression multiplies UnitPrice times

UnitPriceDiscountPrc times OrderQty. Notice that when you

type in a recognized function in the formula bar and then

enter a parenthesis "(", AutoComplete shows the function

syntax. Notice that the formula bar shows this error:

"Column 'OrderQty' cannot be found or may be used in this expression".

In addition, the LineTotal column shows "#ERROR" in every

cell. Because OrderQty doesn't exist, Power BI underlines

with a red squiggly line in the formula bar.

1.In the formula bar, replace the OrderQty reference with

OrderQuantity as follows:

LineTotal = [UnitPrice] * (1-[UnitPriceDiscountPct]) * [OrderQuantity]

2.Press Enter. Now, the column should work as expected.

3.(Optional) Create a report that summarizes LineTotal by a

field in a related table, such as

DimProduct[EnglishProductCategoryName] (or refer to the

"Arithmetic Operations" visual on the "Understanding CC"

page in \Source\Part2\Adventure Works.pbix.

Figure 4.1 The LineTotal calculated column aggregates just

like a regular numeric column.

Analysis

Runtime formula errors are detected and shown in the

formula bar. In case of a runtime error in a calculated

column, all column values show #ERROR. Logical errors are

not detected and it's up to you to test and fix them.

4.2.3 Using Power Query for Custom Columns

Before we continue our DAX tour, let's quickly demonstrate

how you can implement a FullName custom column in Power

Query that produces the same results as its DAX counterpart.

NOTE This practice requires a connection to the AdventureWorksDW database

because every change you make in Power Query necessitates a table refresh to

apply the change to the model. If you want to follow along, read the instructions

in the book front matter to install and configure this database. If this is too much

trouble, you can choose to ignore this exercise because you won't need the

custom column in the practices that follow.

Practice

Think of Power Query as a layer between the data source

and your data model that you can use to define

transformation steps for shaping and cleansing data. It's

important to understand that Power Query contains only the

definitions of these transformations described in the "M"

language. Assuming that data is imported, the actual

transformation steps happen when the table is refreshed.

1.Right-click the DimCustomer table and then click "Edit

query". The Power Query window opens with the

DimCustomer table selected.

2.Select the "Add Column" ribbon. You can use the Custom

Column button to create a new column, but this requires

some experience in "M". Instead, hold the Ctrl key and select

the FirstName and LastName columns in the preview pane.

3.In the "Add Column" ribbon, expand the "Column From

Examples" and then chose "From Selection". This tells Power

Query to auto-generate the "M" code from an example you'll

provide that involves the selected columns.

Output

Next, you'll type the result you expect.

1.In the new "Column1" column that appears to the right of

the table columns, double-click the first cell and type the

desired result. In our case, type Jon Yang, because that's the

full name of the first customer (see Figure 4.2).

2.Press Enter. Notice that Power Query auto-fills the rest of

the column values. In addition, Power Query shows you the

"M" code behind the new column at the top of the window.

Figure 4.2 Power Query can autogenerate custom columns

from an example you provide.

3.Double-click the column header of the new column (should

be called Merged) and type "FullNamePQ" to differentiate the

new column from the existing FullName calculated column

(column names must be unique within a table). Click OK.

4.Click the Home ribbon and then click the Close & Apply

button to refresh the DimCustomer table.

Analysis

Back to the Power BI Desktop window, expand DimCustomer

in the Fields pane and notice that it now has the FullNamePQ

column. Unlike the FullName calculated column, FullNamePQ

doesn't have any icon. As far as the data model is

concerned, FullNamePQ is just a regular column. The "M"

formula was applied during table refresh but before the data

was loaded into the data model. As you can see in the Data

View tab, the FullName and FullNamePQ columns have the

same values but their implementation is vastly different.

4.3 Summary

In this lesson, you learned about how calculated columns

work and how their expressions are evaluated. I introduced

you to a very important topic in DAX: the expression

evaluation context, which consist of a row context and a

filter context. The row context typically applies to calculated

columns. The filter context is typically associated with DAX

measures. You also learned about other approaches to

implement custom columns and I provided guidance on

which option to choose.

Lesson 5

Relating Data

If you are a heavy Excel user, you've probably used its

omnipresent VLOOKUP function to look up values from

another cell or to aggregate data in a range. This is a

common task for data modeling too, although you use

relationships and tables as opposed to cells and ranges. This

lesson teaches you how to navigate tables whether physical

relationships exist or not. You'll find the DAX formulas for this

lesson in \Source\Part2\Relating Data.dax.

5.1 Navigating Existing Relationships

Recall from Lesson 2 that relationships are very important to

Power BI data models. They promote self-service data

exploration without requiring you to create queries that join

tables. If a relationship exists between a dimension table and

a fact table, you can slice and dice the fact data by any field

in the dimension table. Calculated columns can benefit from

existing relationships too to let you "look up" or aggregate

values from a related table. DAX has two functions, RELATED

and RELATEDTABLE, for navigating active relationships.

5.1.1 Navigating Many-to-One Relationships

Suppose you want to calculate the net profit for each row in

the FactResellerSales table. For our purposes, you'll calculate

the line net profit by subtracting the product cost from the

line item total. As a first step, you need to look up the

product cost in the DimProduct table. In other words, for

each row (line item) in FactResellerSales table, you need the

product identifier (ProductKey column), then follow the

relationship to DimProduct, and look up the value in

DimProduct[StandardCost]. This is a many-to-one

relationship from the FactResellerSales table perspective

(notice the * symbol in Figure 5.1)

Figure 5.1 Looking up the product cost in DimProduct

requires navigating the many-to-one relationship for each

row in Fact Reseller Sales.

Practice

When working on a complicated formula, consider breaking it

up into multiple steps. Let's focus on looking up the

StandardCost first.

1.Make sure the Data or Report View tab is selected in the

navigation pane. In the Fields pane, right-click the Fact ‐

Reseller Sales table and then click "New column".

2.In the formula bar, enter the following formula and press

Enter:

NetProfit = RELATED(DimProduct[StandardCost])

Output

Power BI adds a new NetProfit column to DimProduct and

populates it with standard cost for that product that is

recorded in the DimProduct[StandardCost] column.

Analysis

This expression uses the RELATED function to look up the

value of the StandardCost column in the Product table. Since

a calculated column inherits the current row context, this

expression is evaluated for each row. Unfortunately, Power BI

doesn't automatically propagate the row context to related

tables. Hence, you must use RELATED which is designed to

follow a many-to-one relationship and to apply the row

context. RELATED has the following definition:

Related(<column>)

For each row in FactResellerSales, Power BI constructs a row

context consisting of all column values in that row, including

the ProductKey value. Then, it navigates the

FactResellerSales[ProductKey] -> DimProduct[ProductKey]

relationship, and retrieves the standard cost for that product

from the DimProduct[StandardCost] column.

NOTE RELATED requires a row context and an active relationship to the table

where the column is located. If there is no active relationship, RELATED returns

an error.

To recap, RELATED needs a row context and can be used only

in two cases:

 A calculated column expression.

 In an extended "X" function, such as SUMX, that iterates

over a table and creates a row context for each row.

Practice

Complete the NetProfit formula to calculate the line net

profit:

1.Change the formula as follows;

NetProfit = [LineTotal] - (RELATED(DimProduct[StandardCost]) *

FactResellerSales[OrderQuantity])

2.In the Fields list, select FactResellerSales[NetProfit]. In the

Modeling ribbon (Formatting group), format the column

values without decimal places.

3.(Optional) Test the NetProfit column, such as to aggregate

it by DimDate[CalendarYear], or refer to the "RELATED

Function" visual on the page "Relating Data" in

\Source\Part2\Adventure Works.pbix, which is shown in

Figure 5.2.

Analysis

While browsing the values in the NetProfit column in the

Data View tab, notice that when the line item's product cost

exceeds the line total, the result is a negative value. This is

the expected result so don't be alarmed.

Figure 5.2 The NetProfit calculated column uses the

RELATED function to look up the product standard cost.

Remember that a calculated column can be placed in any

area of the report when it makes sense. In this case,

NetProfit is a numeric column and you can place it in the

visual's Values area to aggregate it. This doesn't make it a

measure though. Instead, Power BI creates an implicit

measure to summarize the calculated column.

5.1.2 Simplifying the Model Schema

You can use the RELATED function to simplify a snowflake

schema by reducing the number of tables. For example,

unless there is a good reason to keep these tables separate,

you can consolidate DimProduct, DimProductSubcategory

and DimProductCategory. While you can accomplish this with

custom SQL or Power Query, let's use calculated columns.

TIP Although this is a useful exercise for calculated columns, I recommend you

use SQL or Power Query for data shaping. SQL and Power BI are better suited for

transformation tasks, such as replacing empty values that don't have a match.

Practice

Denormalizing the product schema with DAX requires two

new calculated columns:

1.Add these two columns to DimProduct so that this table has

both product category and subcategory:

EnglishProductSubcategoryName =

RELATED(DimProductSubcategory[EnglishProductSubcategoryName])

EnglishProductCategoryName =

RELATED(DimProductCategory[EnglishProductCategoryName])

2.(Optional) Hide the DimProductSubcategory and

DimProductSubcategory tables. To hide a table, right-click

the table in the Fields pane (make sure that the Data View

tab or Model View tab are selected) and click "Hide in report

view".

Output

The DimProduct table now has the product subcategory and

category as calculated columns that derive their values from

the related tables. As a result, you managed to collapse

three tables into one and thus you simplified the model

schema. Notice that the new columns have empty values

when there is no match.

Analysis

You can use the RELATED function to navigate many-to-one

cascading relationships and look up values from tables that

are not directly related to the home table. Think of RELATED

as a SQL left join between two tables. In the case where

there is no match, it returns an empty value.

5.1.3 Navigating One-to-Many Relationships

Another DAX function, RELATEDTABLE, lets you navigate a

relationship in either direction. This is useful when the

formula needs to follow a one-to-many relationship, that is

from the dimension table to the fact table. It has the

following definition:

RELATEDTABLE(<tableName>)

Like RELATED, RELATEDTABLE propagates the row context.

Because it returns a table with a subset of rows that match

the current row context, you typically need to aggregate the

results if you want to use this function in a calculated

column.

NOTE Although less common, Power BI also supports relationships with a many-

to-many data cardinality (not to be confused with many-to-many relationships

discussed in the lesson "Many-to-many relationships"), such as between two fact

tables or between tables in different storage modes (imported and DirectQuery).

You can also use RELATEDTABLE to navigate such relationships. For more

information about relationships with a many-to-many cardinality, refer to the

article "Relationships with a many-many cardinality in Power BI Desktop" at

https://docs.microsoft.com/power-bi/desktop-many-to-many-relationships.

Practice

Suppose you need a calculated column in the DimProduct

table that summarizes the reseller sales from

FactResellerSales for each product: In your first attempt, add

the following calculated column to DimProduct:

ResellerSales = SUM(FactResellerSales[SalesAmount])

Outcome

The DimProduct[ResellerSales] calculated column returns a

repeating value that represents the overall sales across the

entire FactResellerSales.

Analysis

The formula doesn't propagate the row context of the

"current product".

Practice

Change the formula of the calculated column as follows:

ResellerSales = SUMX(RELATEDTABLE(FactResellerSales),

FactResellerSales[SalesAmount])

Outcome

Now the calculated column returns the expected results.

Notice that some products, such as accessories, show no

sales because they are never sold.

1.(Optional) Test the ResellerSales column, such as to

aggregate it by DimProduct[EnglishProductCategoryName],

or refer to the "RELATEDTABLE" visual on the report page

"Relating Data" in \Source\Part2\Adventure Works.pbix, which

is shown in Figure 5.3.

Figure 5.3 The ResellerSales calculated column uses the

RELATEDTABLE function to aggregate related sales.

Analysis

The RELATEDTABLE function transitions the row context from

DimProduct to FactResellerSales in order to filter the sales

transactions for each product. Because it returns a table of

matching rows, the SUMX extended function is used to

iterate row by row over the returned table and summarize

FactResellerSales[SalesAmount]. You can use

COUNTROWS(RELATEDTABLE(FactResellerSales)) to see how

many rows are matched.

Behind the scenes, RELATEDTABLE is a shortcut to the DAX

CALCULATETABLE function. This formula produces the same

result.

ResellerSales = SUMX(CALCULATETABLE(FactResellerSales),

FactResellerSales[SalesAmount])

5.2 Navigating Virtual and Inactive

Relationships

Active relationships are easy to work with and you should

always create and use relationships when possible as they'll

give you the best performance when joining tables. But what

if two tables can't be related or they have an inactive

relationship? Fortunately, DAX has functions to help you.

5.2.1 Looking up Values

You can use the LOOKUPVALUE function to look up a single

value from another table. The LOOKUPVALUE function has

the following definition:

LOOKUPVALUE(<result_columnName>, <search_columnName>, <search_value>

[, <search_columnName>, <search_value>]…[, <alternateResult>])

LOOKUPVALUE searches and returns the value in a column

that meets one or more conditions. The search conditions

must result in a single value or multiple (but identical) values

to avoid an error. If no match is found, the function returns a

blank value which you can substitute with another value

specified in the alternateResult argument.

Practice

The DimEmployee table has a SalesTerritoryKey column that

associates a salesperson with a sales territory in the

DimSalesTerritory table. Suppose you want to look up the

assigned country and add it as a column to DimEmployee.

Add a SalesTerritoryCountry calculated column to

DimEmployee with this formula:

SalesTerritoryCountry = LOOKUPVALUE(DimSalesTerritory[SalesTerritoryCountry],

DimSalesTerritory[SalesTerritoryKey], DimEmployee[SalesTerritoryKey])

Output

Most employees are not salespeople and they don't have an

associated sales territory. In this case, the

SalesTerritoryCountry calculated column shows 'NA' because

that's the corresponding country for SalesTerritoryKey of 11.

Otherwise, the column shows the associated country.

Figure 5.4 The SalesTerritoryCountry uses LOOKUPVALUE to

look up the country associated with a salesperson.

Analysis

The first argument (DimSalesTerritory[SalesTerritoryCountry)

is the value you want to retrieve. The second argument

(DimSalesTerritory[SalesTerritoryKey]) is the column to

search. The third argument is the search value. It must be a

scalar expression that returns a single value whose type

matches the column to be searched and cannot refer to any

column in the searched table.

5.2.2 Navigating Inactive Relationships

Strictly speaking, the Adventure Works model has an inactive

relationship between the DimEmployee and

DimSalesTerritory tables. However, Power BI makes it difficult

to use this relationship in calculated columns. For the sake of

completeness, I'll provide the formula, but I recommend you

use LOOKUPVALUE instead to avoid added complexity.

Practice

Unfortunately, RELATED and RELATEDTABLE can't navigate

inactive relationships. The only way to navigate an inactive

relationship is to use the USERELATIONSHIP function, which

has the following definition:

USERELATIONSHIP(<columnName1>,<columnName2>)

The two columns must be from two different tables related

with an inactive relationship. The first column should be on

the many side of the relationship (foreign key), but Power BI

will swap the columns if you change the order, so you don't

have to remember this rule. The final formula is:

SalesTerritoryCountry = CALCULATE(

CALCULATE(VALUES(DimSalesTerritory[SalesTerritoryCountry]), DimEmployee),

USERELATIONSHIP(DimEmployee[SalesTerritoryKey],

DimSalesTerritory[SalesTerritoryKey]))

Analysis

The outermost CALCULATE function transitions the row

context to a filter context and uses

USERELATIONSHIP as a second argument. The VALUES

function returns the distinct values in a column, which in this

case is the list of countries in the

DimSalesTerritory[SalesTerritoryCountry] column. However, if

you know that VALUES would return just one value, you can

use it in a formula when a single value is expected.

So that only the associated country is returned, the

formula uses a second CALCULATE function which filters only

the countries (the outcome will be just one country) that

intersects with the DimEmployee table over the inactive

relationship. So, there are two context transitions:

1.From the row context of the current employee to the filter

context over the inactive relationship.

2.A second context transition caused by the nested

CALCULATE.

5.3 Summary

Calculated columns must often retrieve values from other

tables. Use the RELATED and RELATED TABLE functions to

look up values from tables related with an active physical

relationship. Use LOOKUPVALUE to lookup a single value

when a physical relationship doesn't exist.

Lesson 6

Aggregating Data

One of the most common tasks in data analytics is

aggregating data, such as to summarize the sales for each

product or rank customers based on their overall sales. In

this lesson you'll learn how to aggregate data in calculated

columns. It also revisits the evaluation context in which a

formula is evaluated, and how the context is propagated to

related tables. You'll find the DAX formulas for this lesson in

\Source\Part2\Aggregating Data.dax.

6.1 Aggregating Columns

DAX supports various aggregation functions and Table 6.1

shows the ones that you'd probably use the most. You can

use these functions in both calculated columns (the subject

of this lesson) and measures.

Table 6.1 This table shows the most common aggregation functions in

DAX.

Aggregation

Function

Description Extended

Function

AVERAGE* Returns the average (arithmetic mean) of all the numbers in a

column

AVERAGEX

COUNT* Counts the number of values in a column that contain

numbers

COUNTX

DISTINCTCOUNT Counts the number of distinct values in a column

MAX* Returns the largest numeric value in a column, or between two

scalar expressions

MAXX

MEDIAN* Returns the median of numbers in a column MEDIANX

MIN* Returns the smallest numeric value in a column, or between

two scalar expressions

MINX

RANX.EQ* Returns the ranking of a number in a list of numbers RANKX

SUM* Adds all the numbers in a column SUMX

6.1.1 Understanding Aggregation Functions

DAX "borrows" many aggregation functions from Excel, but

instead of taking cells or ranges, the DAX counterparts

reference table columns. For example,

SUM(FactResellerSales[SalesAmount]) summarizes the

SalesAmount column in the FactResellerSales table.

NOTE Remember that when used in calculated columns, none of these functions

transition the row context into a filter context and they will return nonsensical

results. You need a function that transitions the context, such as

RELATED, RELATEDTABLE, CALCULATE or CALCULATETABLE.

Some of these functions, such as the ones I marked with an

asterisk (*) next to the function name, operate on numeric

values. For example, COUNT expects a column that contains

numbers, dates, or text that can be converted to a number.

However, COUNT also has an "A" counterpart (COUNTA),

which counts values of any data type that aren't empty.

Likewise, MIN finds the smallest value in a column that

contains numbers or dates, whereas MINA can operate on

text values.

Practice

Let's add a calculated column to the DimCustomer table that

shows how many times a customer bought something.

Because each row in FactInternetSales represents an order

line item, you'll overstate the result if you count rows.

Instead, you'll use the DISTINCTCOUNT function to count the

SalesOrderNumber column. In your first attempt, add a

#Sales calculated column to DimCustomer with the following

formula:

#Sales = DISTINCTCOUNT(FactInternetSales[SalesOrderNumber])

Outcome

The formula doesn't produce the expected results. Like the

DimProduct[ResellerSales] column in the previous lesson,

#Sales returns a repeating number representing the distinct

count of SalesOrderNumber across the entire

FactInternetSales table. There are 27,659 sales orders but

that's across all customers.

Analysis

None of the aggregation functions transition the row context

to the related tables. Unfortunately, DISTINCTCOUNT doesn't

have an extended function, such as DISTINCTCOUNTX, that

would allow us to use RELATEDTABLE or CALCULATETABLE,

as you did in the previous lesson with SUMX. This brings us

to the CALCULATE function.

6.1.2 Introducing the CALCULATE Function

CALCULATE is a very important and versatile function,

especially for measures. In fact, this function is so important,

that it will take a few lessons to cover it in enough detail.

Let's start with its definition:

CALCULATE (<Expression> [, <Filter> [, <Filter> [, …]]])

Understanding evaluation

When used in a calculated column, CALCULATE goes through

the following steps to create the context in which the

expression is evaluated:

1.Evaluates the existing row context. For example, if a

calculated column has a formula that uses CALCULATE, a row

context will be created for each iterated row.

2.Discards the original row context because CALCULATE

requires a filter context.

3.Performs the context transition. For example, when used in

a calculated column, CALCULATE creates a filter context

formed by each value of the table columns in the row that

it's being iterated.

4.Evaluates the filter arguments and overwrites the context if

it encounters one of the following functions:

USERELATIONSHIP, CROSSFILTER, ALL, ALLEXCEPT,

ALLSELECTED, and ALLNOBLANKROW.

5.Applies the other filter arguments.

Practice

Change the #Sales formula as follows:

#Sales = CALCULATE(DISTINCTCOUNT(FactInternetSales[SalesOrderNumber]))

Outcome

The formula works now. For example, #Sales returns 1 for

the first customer (Latasha Suarez). To test, browse

FactInternetSales in the Data View tab, and filter the

CustomerKey column to 11471 (the key value for Latasha).

As an optional exercise, create a visual with

DimCustomer[FullName] and #Sales, as shown in Figure

6.1.

Figure 6.1 The #Sales calculated column counts distinct

orders in the FactInternetSales table.

Analysis

CALCULATE creates a new filter context from all the column

values for the row being iterated.

DISTINCTCOUNT is evaluated in that context so it returns the

number of orders for each customer.

6.2 Understanding Extended

Functions

Besides the aggregation functions that take only a column as

an argument, DAX has extended versions. Going back to

Table 6.1, you can see that several aggregation functions

have extended versions suffixed with "X", such as SUMX.

6.2.1 Understanding Extended Syntax

For example, the SUMX function, which you used in the

previous lesson, has this syntax:

SUMX (<Table>, <Expression>)

The extended versions are iterators, meaning that they

calculate the expression for each row in the table passed as

the first argument.

NOTE As it turns out, the regular aggregation functions are just wrappers on top

of the extended functions. For example,

SUM(table[column]) is internally translated to SUMX(table, SUM([column])).

The extended functions are particularly powerful in measures

because their evaluation context propagates to the table

passed as the first argument. For example, if you have a

Matrix visual with years in the column labels, and product in

the row labels, and then you use a measure with the formula

SUMX(FactResellerSales, [UnitPrice] * [OrderQuantity]), then

each report cell will show the aggregated sales belonging to

the corresponding year and product by calculating the

expression for each sales transaction and then rolling up the

result. Let's understand how this works in more detail.

6.2.2 Understanding Iteration

Consider the following formula:

SUMX(FactInternetSales, [UnitPrice] * [OrderQuantity])

As an iterator, SUMX iterates each row in FactInternetSales

and calculates the expression

[UnitPrice] * [OrderQuantity]. Then it sums up the result in

the filter context of each report cell. If the formula uses

AVERAGEX, it would compute the average over the

expression calculated for each row. Some of the extended

functions take additional arguments. For example, RANKX,

which you'll use in the next practice, has this syntax:

RANKX(<table>, <expression>[, <value>[, <order>[, <ties>]]])

The ties argument can be either Skip (default value) or

Dense. When set to Dense, the function doesn't skip

numbers for tied ranks.

Practice

Suppose you want to rank each customer based on the

customer's overall sales. The RANKX function can help you

implement this requirement. As a first attempt, add a

SalesRank calculated column to DimCustomer as follows:

SalesRank = RANKX(DimCustomer,

SUM(FactInternetSales[SalesAmount]),,,Dense)

Outcome

Unfortunately, the formula returns the same value (1) for

each customer. To fix this issue, use one of the following

formulas:

SalesRank = RANKX(DimCustomer, SUMX(RELATEDTABLE(FactInternetSales),

[SalesAmount]),,,Dense)

SalesRank = RANKX(DimCustomer,

CALCULATE(SUM(FactInternetSales[SalesAmount])),,,Dense)

As an optional step, create a visual that shows

DimCustomer[FullName], DimCustomer[SalesRank], and

FactInternetSales[SalesAmount] (see Figure 6.2).

Figure 6.2 The SalesRank calculated column ranks each

customer based on the customer overall sales.

Analysis

As RANKX iterates over each row in DimCustomer, it

evaluates the expression passed in the second argument,

which in this case is SUM(FactInternetSales[SalesAmount]).

As an iterator function, RANKX doesn't propagate by default

the row context to the expression. This causes the formula to

evaluate the rank over the same sales amount for each

customer.

To fix this issue, the first formula uses RELATEDTABLE to

transition the row context to a filter context. Because

RELATEDTABLE returns a table, you need to use a function

that takes a table as an argument. The function for summing

values is SUMX. The second formula uses CALCULATE to

transition the context. It uses SUM in the second argument.

Alternatively, you can use SUMX:

SalesRank = RANKX(DimCustomer, CALCULATE(SUMX(FactInternetSales,

FactInternetSales[SalesAmount])),,,Dense)

6.3 Summary

DAX supports various aggregation functions which have their

roots in Excel. Most aggregation functions take a table

column as their only argument. However, DAX provides

extended versions (with "X" suffix) that are more versatile.

Remember that for these functions to work in calculated

columns you must somehow transition the row context into a

filter context, such by using the RELATED or RELATEDTABLE

functions, or by using CALCULATE.

Lesson 7

Filtering Data

DAX formulas often need to apply filters to narrow the

context in which the formula operates. This lesson teaches

you different ways to filter data with the CALCULATE and

FILTER functions, and how to remove filters to expand the

evaluation context. You'll find the DAX formulas for this

lesson in \Source\Part2\Filtering Data.dax.

7.1 Adding Filters

DAX has various functions related to filtering data, including

functions to apply and remove filters, and functions to detect

the filter selection (detecting the filter context is useful for

measures only). Table 7.1 shows the most common filter

functions to apply filters.

Table 7.1 This table shows the most common functions for applying filter

conditions.

Filter Function Description

CALCULATE Evaluates a scalar expression in a context that is modified by specified filter

conditions that can either add or remove filters

CALCULATETABLE Like CALCULATE but evaluates a table expression

EARLIER (avoid) Returns the current value of the specified column in an outer evaluation pass of the

mentioned column. Use variables instead

FILTER Returns a table by applying a filter expression

7.1.1 Using the Filter Function

The FILTER function is one of the most used (and abused)

DAX functions. It has the following syntax:

FILTER (<Table>, <FilterExpression>)

The FILTER function is an iterator. It scans each row in the

table passed as the first argument and check if it meets the

condition specified in the filter expression. The

FilterExpression argument must be a valid DAX Boolean

expression that can include multiple conditions using the

logical operators AND (&&) and OR (||), such as:

FactInternetSales[OrderDate] <=DATE(2012, 12, 31)

FactInternetSales[OrderDate] <=DATE(2012, 12, 31) ||

FactInternetSales[ShipDate] = BLANK()

FactInternetSales[OrderDate] >=DATE(2011, 1,1) &&

FactInternetSales[OrderDate] <=DATE(2012, 12, 31)

Practice

Let's adds a new calculated column to DimCustomer that

returns the customer's sales for the year 2013. In your first

attempt, you might come up with the following formula:

2013Sales = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(FactInternetSales,

FactInternetSales[OrderDate] >= DATE(2013, 1, 1)

&& FactInternetSales[OrderDate] <= DATE(2013, 12, 31)))

NOTE What if you want the formula to be evaluated as of a date specified by the

user, such as by using a report filter or slicer? Remember that calculated columns

can't access runtime conditions, so to meet this requirement you need a measure

and not a calculated column. To emphasize this, the example uses fixed dates.

Output

The 2013Sales column doesn't work as expected.

Specifically, it shows the same value across all customers.

This value corresponds to the sum of SalesAmount for year

2013 across the entire table.

Analysis

As you learned before, the CALCULATE function transitions

the row context to a filter context, causing the SUM function

to evaluate for each customer. However, as a row iterator,

the FILTER function creates a new filter context that includes

the entire FactInternetSales table causing the repeated

values. Change the formula as follows:

2013Sales = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(RELATEDTABLE(FactInternetSales),

FactInternetSales[OrderDate]>=DATE(2013, 1, 1) &&

FactInternetSales[OrderDate]<=DATE(2013, 12, 31)))

Now the formula works as expected. RELATEDTABLE

propagates the row context to FactInternet Sales causing the

FILTER function to filter only sales for the iterated row in

DimCustomer. Another way to accomplish the same result

and make the formula more efficient is to use the ALL

function:

2013Sales = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(ALL(FactInternetSales[OrderDate]),

FactInternetSales[OrderDate]>=DATE(2013, 1, 1) &&

FactInternetSales[OrderDate]<=DATE(2013, 12, 31)))

The ALL function removes the filter from the OrderDate

column. The reason why this is more efficient is that the

FILTER function will now iterate only through the OrderDate

values (1,124 versus 60,398 rows in FactInternetSales). To

optimize things even further in this case, use the YEAR

function (returns the year from a date) to replace the two

filter conditions with one:

2013Sales = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(ALL(FactInternetSales[OrderDate]),

YEAR(FactInternetSales[OrderDate]) = 2013))

Practice

Assuming ShipDate can be empty, change the formula to

include sales where ShipDate is empty.

2013Sales = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(ALL(FactInternetSales[OrderDate], FactInternetSales[ShipDate]),

YEAR(FactInternetSales[OrderDate])=2013 || FactInternetSales[ShipDate] =

BLANK()))

Analysis

The OR (||) operator is used in the FILTER function to filter

where the sales year is 2013 or ShipDate is blank. In DAX,

checking for empty (NULL) values is accomplished by

checking for blank values (like Excel). Or, you can use the

ISBLANK() function which returns TRUE if the value is blank:

2013Sales = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(ALL(FactInternetSales[OrderDate], FactInternetSales[ShipDate]),

YEAR(FactInternetSales[OrderDate])=2013 ||

ISBLANK(FactInternetSales[ShipDate])))

In the case where there are only two AND (or OR) conditions,

you can use the AND and OR functions, as follows:

2013Sales = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(ALL(FactInternetSales[OrderDate], FactInternetSales[ShipDate]),

OR(YEAR(FactInternetSales[OrderDate])=2013,

ISBLANK(FactInternetSales[ShipDate]))))

Note the special use of the ALL function to return the unique

combinations between OrderDate and ShipDate. This

reduces the number of rows that the storage engine needs to

scan.

TIP When you need to filter on a few columns, you could make the formula more

efficient by using ALL(column1, column2,..) to get the unique combinations

among the columns. Use DAX Studio to check the count of rows from the

following query: EVALUATE ALL(FactInternetSales[OrderDate],

FactInternetSales[ShipDate])

If you get substantially less rows than the total row count in the fact table, it's

more efficient to use ALL. However, as the number of filtered columns increase,

you'll get closer and closer to the cardinality of the entire table and RELATED or

RELATEDTABLE might be a better choice as it makes the syntax shorter for

calculated columns.

Practice

Change the 2013Sales formula to return sales only for the

Accessories product category. This will require joining

FactInternetSales and DimProduct.

2013Sales = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(RELATEDTABLE(FactInternetSales),

(YEAR(FactInternetSales[OrderDate])=2013 ||

ISBLANK(FactInternetSales[ShipDate]))

&& RELATED(DimProduct[EnglishProductCategoryName]) =

"Accessories"))

Create a report that shows side by side

DimCustomer[FullName] and 2013Sales (see Figure 7.1).

Figure 7.1 The 2013Sales calculated column shows the

customer's sales for year 2013 and Accessories product

category.

Analysis

This formula uses the RELATED function to navigate the

relationship between FactInternetSales and DimProduct to

filter where the DimProduct[EnglishProductCategoryName]

column is "Accessories". Notice that the formula uses the

AND (&&) logical operator.

7.1.2 Using the CALCULATE Function

As explained in the previous lesson the CALCULATE function

takes filter arguments.

CALCULATE (<Expression> [, <Filter> [, <Filter> [, …]]])

Therefore, in many cases you can use CALCULATE instead of

FILTER for a shorter syntax and better performance.

Understanding filter arguments

CALCULATE evaluates the expression passed as the first

argument in a context modified by the filter arguments. The

filter argument can be one of these three types:

 Filter elimination – DAX functions, such as ALL and

ALLEXCEPT, can remove filters.

 Filter restoration – The DAX function ALLSELECTED can

ignore innermost filters but restore outer filters.

 Table expression – Similar to using the FILTER function, you

can use a filter to narrow the context of the expression

evaluation.

Each filter argument acts as an AND condition. For example,

if you have two filter arguments, the filtered results must

match both. Each argument can apply multiple filtering

criteria, but they must use the same column.

Practice

Like the first practice in this lesson, create a new 2013SalesC

column that returns 2013 sales for each customer using the

CALCULATE function:

2013SalesC = CALCULATE(SUM(FactInternetSales[SalesAmount]),

YEAR(FactInternetSales[OrderDate])=2013)

Analysis

The formula returns the same results as its FILTER

counterpart, but it doesn't need the RELATED function to

transition the row context. It may seem faster because it's

more compact, but internally the formula engine will replace

it with this formula:

2013SalesC = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(ALL(FactInternetSales[OrderDate]),

YEAR(FactInternetSales[OrderDate])=2013))

Just like the FILTER version, the formula will scan the

FactInternetSales[OrderDate] column, so it will be executed

1,124 times (the unique values in

FactInternetSales[OrderDate]).

Practice

Change the 2013SalesC formula to include sales where

OrderDate is empty. Then, replace OrderDate with ShipDate

to include sales where ShipDate is empty.

2013SalesC = CALCULATE(SUM(FactInternetSales[SalesAmount]),

YEAR(FactInternetSales[OrderDate])=2013 ||

FactInternetSales[OrderDate]=BLANK())

2013SalesC = CALCULATE(SUM(FactInternetSales[SalesAmount]),

YEAR(FactInternetSales[OrderDate])=2013 ||

FactInternetSales[ShipDate]=BLANK())

Analysis

Notice that while the first formula works, the second fails

with the error "The expression contains multiple columns,

but only a single column can be used in a True/False

expression that is used as a table filter expression". The

reason for this error is that unlike the FILTER function, a filter

argument in CALCULATE must reference the same column.

NOTE A single filter condition involving two or more columns doesn't work with

CALCULATE. For OR filters, use the FILTER function instead. For a better

performance, consider FILTER (ALL(column1, column2), <conditions>).

Practice

Extend the 2013SalesC calculated column to include only

sales where product category is accessories.

2013SalesC = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(ALL(FactInternetSales[OrderDate], FactInternetSales[ShipDate]),

YEAR(FactInternetSales[OrderDate])=2013 ||

ISBLANK(FactInternetSales[ShipDate])),

DimProduct[EnglishProductCategoryName] = "Accessories")

Analysis

Recall that CALULATE can take multiple filter arguments that

act as AND filters. While you can include all filter conditions

in a single FILTER function, you might get a better

performance if you use separate AND filters if you need to

filter on multiple columns. This formula uses the FILTER

function for the OR filter as before. Because the product

category filter is an AND filter (filter on the dates and

category), the formula passes it as another filter argument.

Why is this faster? If you use the FILTER function for all

conditions, the formula will scan all the rows in

FactInternetSales. By breaking it into two filters, the formula

will scan 1,124 rows (the FILTER function with the OR

condition), and 158 rows (the number of unique values in the

Fact InternetSales[ProductKey] column).

TIP When you need multiple AND filters on different columns, test performance

with a single FILTER function and multiple filters in CALCULATE. The chances are

that multiple filters will perform better with larger tables.

Practice

Change the 2013SalesC formula to return sales for product

categories Accessories or Sales.

2013SalesC = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(ALL(FactInternetSales[OrderDate], FactInternetSales[ShipDate]),

YEAR(FactInternetSales[OrderDate])=2013

|| ISBLANK(FactInternetSales[ShipDate])),

DimProduct[EnglishProductCategoryName] IN {"Accessories", "Bikes"})

Analysis

To keep the syntax shorter, use the IN operator to filter on

multiple values. Notice that the IN operator requires curly

braces to surround the values. Text values need to be

surrounded with quotes.

7.2 Removing Filters

Sometimes, your formula may require removing filters. This

is especially useful for measures, such as to calculate

"percent of total" measures, but you might need to remove

filters in calculated columns too.

7.2.1 Understanding the "ALL" Functions

Table 7.2 shows the most common DAX functions to remove

existing filters.

Table 7.2 These three functions are commonly used to remove filters.

Filter

Function

Description

ALL Ignores all filters and returns all rows in table or column.

ALLEXCEPT Ignores all filters and returns all rows in table or column except specified columns that

retain their filters.

ALLSELECTED Removes context filters from columns and rows in the current query, while retaining all

other context filters or explicit filters.

Understanding the ALL function

The ALL function has the following definition:

ALL([<table> | <column>[, <column>[, <column>[,…]]]])

It takes either a table (as a single argument) or one or more

columns. When a table is used as an argument, it ignores all

filters and returns all rows in the table. When used with

columns, it removes their filters but retains filters on other

columns in the table. In the previous practices in this lesson,

you used the ALL function to remove active filters from

OrderDate and ShipDate columns.

Understanding the ALLEXCEPT function

This function has the following syntax:

ALLEXCEPT (TableName, <ColumnName> [, <ColumnName> [, …]])

ALLEXCEPT removes active filters from the table passed as

the first argument but retains active filters on the columns

specified as subsequent arguments. It's useful when you

want to avoid specifying many columns in the ALL function.

For example, these two formulas produce the same results

over a table with three columns.

ALL(table, column1, column2)

ALLEXCEPT(table, column3)

Understanding the ALLSELECTED function

The syntax of ALLSELECTED is:

ALLSELECTED([<tableName> | <columnName>])

This function takes either a table or a column as a single

argument. ALLSELECTED is typically used for measures to

produce visual totals.

7.2.2 Applying and Removing Filters

Let's practice what we've learned by creating a formula that

finds duplicate values in a table column. This could be useful

to determine which value(s) prevents a column to serve as a

primary key in a dimension table that you want to join to a

fact table. The ProductAlternateKey column in DimProduct

represents the business key that is used in the source

system to identify a product. Because some historical

changes, such as changing the product price, are significant,

the modeler has decided to treat these changes as Type 2

changes. When a change is detected in these columns, a

new row is added to the table for that product. The Status

column is set to "Current" to the latest "version" of the row.

Therefore, ProductAlternateKey may contain duplicate

values.

Practice

In your first attempt, you can come up with the following

formula for the RowCount calculated column:

RowCount = COUNTROWS(FILTER(DimProduct, DimProduct[ProductAlternateKey]

= DimProduct[ProductAlternateKey]))

Outcome

This formula doesn't work and returns the same number

(606) in every row in DimProduct. That's because the FILTER

function iterates over all rows in DimProduct and each row

meets the condition (a column value always equals itself).

Knowing about filter transition, your second attempt could be

to surround the entire formula with CALCULATE only to find

that now the RowCount calculated column returns 1 in each

row. As a consolation prize, you managed to propagate the

row context to DimProduct so that only the "current" product

is filtered. One way to produce the correct results is a two-

step approach:

1.Remember the value of the ProductAlternateKey column for

the current product.

2.Find other rows that have the same value.

Practice

Change the formula as follows:

RowCount = COUNTROWS(FILTER(DimProduct,

DimProduct[ProductAlternateKey] =

EARLIER(DimProduct[ProductAlternateKey])))

This formula works as you can see by expanding the

dropdown in the header of the ProductAlternateKey column.

Most rows have RowCount=1 but there are duplicate rows

where the count is 2 and 3. The EARLIER function retrieves

the outer context for the current row (before the FILTER

function iterates the row). Think of this as the first pass in

the two-step evaluation. However, the EARLIER function

should be avoided because of its complexity and unexpected

side effects. Instead, use a variable that accomplishes the

same result.

RowCount = VAR CurrentProduct = DimProduct[ProductAlternateKey]

RETURN

COUNTROWS(FILTER(DimProduct, DimProduct[ProductAlternateKey] =

CurrentProduct))

Analysis

I'll discuss variables in more detail in the second part of the

book. For now, think of a variable as a constant that is

evaluated once for each row in the row context (once for

each product being iterated). Like EARLIER, the

CurrentProduct variable returns the value of Product ‐

AlternateKey in that row context.

Practice

Yet, another way to accomplish the same result is to use the

ALLEXCEPT function.

RowCount = CALCULATE (COUNTROWS(), ALLEXCEPT(DimProduct,

DimProduct[ProductAlternateKey]))

Create a report, such as the one shown in Figure 7.2, that

shows DimProduct[ProductKey],

DimProduct[EnglishProductName], and RowCount, to test the

RowCount calculated column.

Figure 7.2 The RowCount calculated column shows the

count of rows with the same ProductAlternateKey.

Analysis

The ALLEXCEPT function removes the filter context for all

columns except ProductAlternateKey. COUNTROWS without

an argument instructs the function to count rows in the

current table, which is the same as

COUNTROWS(DimProduct). COUNTROWS is executed for

each product but it retains the filter context (current

product). The net result is counting rows in the table where

ProductAlternateKey equals the key of the current row.

7.3 Summary

Filtering is an important concept in DAX. DAX has an

assortment of functions for adding or removing filters. I

recommend you rely most on the CALCULATE function

because it has the simplest syntax and it might give you the

best performance. For more complicated filter conditions,

use the FILTER function. Use the ALL, ALLEXCEPT, and

ALLSELECTED functions to remove filters when needed.

Lesson 8

Grouping and Binning Values

Calculated columns are especially useful for grouping and

binning data, such as to analyze customer sales by age

buckets. This lesson starts by showing you the Power BI built-

in capabilities for grouping and binning. Then it shows you

how to apply your own DAX formulas when you need more

control. You'll find the DAX formulas for this lesson in

\Source\Part2\Grouping and Binning.dax.

8.1 Applying Grouping and Binning

Dynamic grouping allows you to create your own groups,

such as to group countries with negligible sales in the

"Others" category. In addition to grouping categories

together, you can also create bins (also referred to as

buckets or bands) from numerical and time fields, such as to

segment customers by revenue or to create aging buckets.

8.1.1 Implementing Groups

Consider the two charts shown in Figure 8.1. The chart on

the left displays sales by country. Because European

countries have lower sales, you might want to group them

together in the European Countries group, as shown on the

right.

Figure 8.1 The second chart groups European countries

together.

Creating a group

Follow these steps to implement the group:

1.Create a Stacked Column Chart with

DimSalesTerritory[SalesTerritoryCountry] in the Axis area and

FactResellerSales[SalesAmount] in the Values area.

2.Hold the Ctrl key and click each of the data categories you

want to group. Currently, only charts support this way of

selecting group members. To group elements in tables or

matrices, expand the drop-down next to the field in the

Visualizations pane (or click the ellipses button in the Field

list), and click New Group.

3.Right-click any of the selected countries and click Group

from the context menu. Power BI Desktop adds a new

SalesTerritoryCountry (group) field to the DimSalesTerritory

table. This field represents the custom group and it's prefixed

with a double-square icon. Power BI Desktop adds the field to

the chart's Legend area.

4.In the Fields pane, click the ellipsis (…) button next to

SalesTerritoryCountry (group). Click Rename and change the

field name to European Countries.

Editing a group

To make changes to an existing group:

1.Click the ellipsis (…) button next to the European Countries

field and then click Edit Groups.

2.In the Groups window (see Figure 8.2), you can change

the group name and see the grouped and ungrouped

members. If the "Include Other group" checkbox is checked

(default setting), the rest of the data categories (Canada and

United States) will be grouped into an "Other" group.

Figure 8.2 Use the Groups window to view the grouped

values and make changes.

3.Uncheck the "Include Other group" checkbox so that

Canada and United States show as separate data categories.

Click OK.

4.Back to the report, remove SalesTerritoryCountry from the

Axis area. Add the European Countries field to the Axis area.

Compare your report with the right chart shown in Figure

8.1.

TIP Although Power BI Desktop doesn't currently support lassoing categories as a

faster way of selecting many items, you can use the Groups window to select and

add values to the group. Instead of clicking elements on the chart, right-click the

corresponding field in the Fields pane and then click New Group to open the

Groups window. Select the values in the "Ungrouped values" (hold the Shift key

for extended selection) and then click the Group button to create a new group.

8.1.2 Implementing Bins

Besides grouping categories, Power BI Desktop is also

capable of discretizing numeric values or dates in equally

sized ranges called bins.

Understanding binning

Suppose you want to group customers in different bins based

on the customer's overall sales, such as $0-$99, $100-$200,

and so on (see the chart's X-axis in Figure 8.3). This report

counts distinct values of CustomerAlternateKey field (the

business key of the DimCustomer table). This requires

navigating the FactInternetSales[CustomerKey] ->

DimCustomer[CustomerKey] relationship because the

SalesAmount field in the FactInternetSales table will become

the "dimension" while the measure (Count of Customers)

comes from the Customer table.

Figure 8.3 This report counts customers in bin sizes of $100

based on their overall sales.

Creating the bins

Follow these steps to create the report:

1.In the Model View, if the FactInternetSales[CustomerKey] ->

DimCustomer[CustomerKey] relationship has a single arrow

(cross filter direction is Single), double-click it to open the

Edit Relationship window and change the "Cross filter

direction" drop-down to Both. Consequently, you can filter

data in DimCustomer by fields in FactInternetSales. Click OK.

2.Switch to the Report View tab (or Data View tab). In the

Fields pane, click the ellipsis (…) button next to the

SalesAmount field in the FactInternetSales table and then

click New Group.

3.In the Groups window, change the bin size to 100 (you're

grouping customers in bins of $100). Give the group a

descriptive name, such as SalesAmount (bins), and then click

OK.

4.Add a Stacked Column Chart visualization. Add the

"SalesAmount (bins)" field that you've just created to the

Axis area of the Visualizations pane (you'll be grouping the

chart data points by the new field).

5.Add the DimCustomer[CustomerAlternateKey] field to the

Value area. Expand the drop-down next to the

CustomerAlternateKey field in the Value area and switch the

aggregation to Count (Distinct). Compare your results with

Figure 8.3.

8.2 Creating Custom Groups

Power BI implements grouping and binning as calculated

columns, but it hides the column formula to avoid breaking

the user interface if you change the formula. However, it

could be interesting to see the actual formula so you can

learn from it but there is no easy way to script a Power BI

Desktop file.

TIP You can try the approach that I outlined in my "Upgrading Power BI Desktop

Models to Tabular" blog at https://prologika.com/upgrading-power-bi-desktop-

models-to-tabular/ to script a Power BI Desktop file. Even easier, if you publish

the Power BI Desktop file to a Power BI Premium workspace, you can directly

connect SQL Server Management Studio (SSMS) to it and script the published

dataset.

8.2.1 Analyzing Power BI Groups and Bins

Power BI generated two calculated columns:

FactInternetSales[SalesAmount (bins)] and

DimSalesTerritory[European Countries]. Let's examine the

formulas which I obtained by using SSMS to script the

Adventure Works model that I had published to powerbi.com.

Analyzing the binning formula

Let's start with the FactInternetSales[SalesAmount (bins)]

formula as it's easier to understand:

IF(ISBLANK('FactInternetSales'[SalesAmount]), BLANK(),

INT('FactInternetSales'[SalesAmount] / 100) * 100)

This formula uses the IF statement to check if SalesAmount

for the current customer is empty (blank) by using the

ISBLANK function. If this is the case, the BLANK function

returns an empty value. Otherwise, it divides SalesAmount

by 100 to get rid of the last two digits since the bin size you

specified was 100. Then, it uses the INT function to convert

the result to an integer value and removes the decimal

places. Finally, it multiplies the result by 100. So, if the sales

amount is 4,234.34, it will be assigned to the bin with a left

boundary of 4,200.

https://prologika.com/upgrading-power-bi-desktop-models-to-tabular/

Analyzing the grouping formula

And here is the formula behind the European Countries

group:

SWITCH(TRUE,

ISBLANK('DimSalesTerritory'[SalesTerritoryCountry]), "(Blank)",

'DimSalesTerritory'[SalesTerritoryCountry] IN {"France", "United

Kingdom","Germany"}, "European Countries",

'DimSalesTerritory'[SalesTerritoryCountry])

To avoid multiple nested IF functions, this expression uses

the SWITCH function, which has this syntax:

SWITCH(<expression>, <value>, <result>[, <value>, <result>]…[, <else>])

Like the SELECT CASE statement in SQL, the SWITCH

function takes an expression as a first argument and

compares it to the values passed as additional arguments. If

a match is found, SWITCH returns the result corresponding to

the matched value. Because the values are produced by

formulas, Power BI uses a handy trick to pass TRUE as the

expression argument, thus causing all conditions to be

evaluated. The first condition checks if the country is blank

and assigns it to a "(Blank)" group if that's the case.

Otherwise, if the country is one of the European countries, it

returns "European Countries". If none of these conditions are

met, the original country name is returned.

8.2.2 Implementing Custom Groups

Power BI grouping and binning are convenient features, but

they lack in flexibility. For example, you can't configure

specific boundaries. Now that you've seen how Power BI

generates groups and bins, let's use this knowledge to create

your own groups. As an example, you'll bucket the Adventure

Works customers in age groups, such as "0-20", "21-40", "41-

60", and "61 and above".

Practice

The DimCustomer table doesn't have an Age column. Start

by creating an Age calculated column using this formula:

Age = DATEDIFF(DimCustomer[BirthDate], TODAY(), YEAR)

This formula uses the DATEDIFF function, which computes

the difference between two dates using the interval you

specify as the third argument. Like Excel, the TODAY function

returns the system date without time. If you need the system

time, you can use the NOW function.

Now that we have the Age column, create a new "Age

(groups)" calculated column with this formula:

Age (groups) = SWITCH (TRUE,

[Age]<=20, "0-20",

[Age]>20 && [Age]<=40, "21-40",

[Age]>40 && [Age]<=60, "41-60",

[Age]>60, "61 and above",

"Other")

Output

The new formula assigns every customer to an age group

depending on the customer's age. To test the calculated

column, create a chart report that has

FactInternetSales[SalesAmount] in the Value area and "Age

(groups)" in the Axis area (see Figure 8.4). Observe that

most sales are contributed by customers in the 41-60 age

group.

Figure 8.4 This report groups sales by the age groups.

Analysis

Like the formula generated by Power BI, the "Age (groups)"

formula uses the SWITCH function to check which group the

customer's age falls in. If none of the conditions are met, the

customer is assigned to the "Other" group.

As an optional practice, use a similar approach to create a

Tier calculated column that assigns each customer to a tier

based on the DimCustomer[SalesRank] calculated column

you implemented before.

8.3 Summary

Calculated columns are one option for implementing custom

groups and bins (the other options are Power Query or

custom SQL). Consider custom groups to meet more

advanced requirements than auto-generated Power BI

groups and bins can provide.

Lesson 9

Implementing Calculated

Tables

Besides calculated columns, Power BI supports calculated

tables. This lesson starts by explaining what a calculated

table is and when to consider it. Then, it walks you through a

few examples for implementing calculated tables to handle

role-playing dimensions, generate date tables, and improve

performance. You'll find the DAX formulas for this lesson in

\Source\Part2\Calculated Tables.dax.

9.1 Understanding Calculated Tables

If you have used Power BI Desktop for a while, you've

probably noticed that it's a versatile tool and there are

usually different options to accomplish a given task. For

example, I've already explained that you have at least three

options to implement a custom column: calculated column,

Power Query, and custom SQL. Custom tables are no

exception.

9.1.1 What Is a Calculated Table?

Like a calculated column, a calculated table is a custom table

that's based on a DAX formula. The DAX formula must return

a table, such as by using FILTER, SUMMARIZECOLUMNS,

CALCULA TE TABLE, or other DAX table-producing functions.

You create a calculated table by using the New Table button

in the Power BI Desktop Modeling ribbon.

TIP Don't confuse the New Table button in the Modeling ribbon with the Enter

Data button in the Home ribbon. The latter is for creating Power Query tables by

entering explicit values, such as in the case when you need a reference table and

you prefer to enter the column values manually. Once the "Enter Data" table is

imported, it becomes just like a regular table. By contrast, calculated tables are

produced with DAX formulas and you can't enter the data directly. And they don't

have a query behind them.

Understanding storage

In its simplest syntax, you introduce a calculated table by

just referencing an existing table without any modifications,

such as in this example that creates a DimShipDate

calculated table by referencing the DimDate table:

DimShipDate = DimDate

You may think that DAX creates just a shortcut to DimDate

without duplicating the DimDate data. However, behind the

scenes, Power BI copies the data into a new DimShipDate

table. Specifically, it copies all the columns and their values.

It then compresses the data. Once the formula is evaluated

and the table is created, you can see it in the Fields pane.

You can browse its data in the Data View tab and even add

calculated columns to it. The following restrictions apply to

calculated tables:

 You can't remove columns from calculated tables in the

Fields pane. You need to change the DAX formula to

exclude columns.

 A calculated table doesn't have a query. You need to

change the DAX formula, such as to filter some rows.

 A calculated table can't be explicitly refreshed.

 The data in the calculated table can't depend on runtime

conditions, such as user selection in filters or slicers. Like

calculated columns, the reason for this is that calculated

tables are evaluated and stored before the report is run.

Refreshing calculated tables

Like calculated columns, Power BI automatically refreshes

calculated tables according to their dependencies to other

tables. For example, the DimShipDate table will be

automatically updated when you refresh the DimDate table.

So, a calculated table is always up to date with the imported

data in the model and there is nothing you need to do to

synchronize it.

Unlike calculated columns, which may not compress so

well, calculated tables compress their columns like native

columns. Specifically, when Power BI refreshes a calculated

table, it iterates over the rows from the table returned by the

DAX formula just like it does when it refreshes a regular table

(when it iterates over the rows coming from the data

source).

9.1.2 Considering Calculated Tables

Calculated tables can help in certain scenarios but don't

overuse them. Keep in mind these considerations when

you're evaluating calculated tables.

When to use calculated tables

A common scenario for using a calculated table is producing

additional date tables. I've previously said that Power BI

supports only one active relationship between two tables.

But if you want to let users analyze sales by Ship Date or

Due Date? One option is to clone DimDate. Dimensional

methodology refers to such dimension tables as role-playing

dimensions because the same dimension table plays multiple

roles. You can duplicate tables in DAX, SQL or Power Query.

Like calculated columns, the choice depends on several

factors, such as your skillset and the level of transformations

required.

TIP Speaking of date tables, you can use a calculated table and DAX functions,

such as CALENDAR and CALENDARAUTO, to quickly generate a date table if you

don't have one in your data warehouse database or Excel. The practice in this

lesson demonstrates these two functions.

Another reason to use calculated tables is to simplify or

speed up DAX calculations. For example, you might have a

large Customer table and you want to produce a report that

shows the count of customers who subscribed to your

company's services by month. Instead of querying the

Customer table directly, you can add a calculated table that

summarizes the results.

Lastly, when testing complex DAX formulas, it might be

easier to store the intermediate results in a calculated table

and see whether the formulas work as expected.

When not to use calculated tables

To start with, calculated tables are not a replacement for

complex data transformations. For example, if you need

multiple steps to shape the data, it might be better to do this

in Power Query or SQL. More involved data preparation tasks

might even require external data transformation processes

developed by a BI pro.

Like calculated columns, calculated tables add up to the

overall refresh time of your data model. And so will

transformations in Power Query. You need to test the refresh

time with different implementation options for implementing

custom tables.

Moving down the list, calculated tables are evaluated and

saved before reports run. Therefore, their DAX formulas can't

evaluate runtime conditions, such as selected values in

filters or slicers. Only DAX measures can evaluate such

conditions.

9.2 Working with Calculated Tables

Now that you know about calculated tables, let's go through

a few exercises to practice common scenarios that could

benefit from them.

9.2.1 Implementing Role-playing Dimensions

Suppose you want to analyze sales by the order ship date.

Recall that both FactInternetSales and FactResellerSales join

DimDate on the OrderDateKey. Since now you need to join

the tables on another column, you have two options to

support this requirement:

 Create measures that navigate inactive relationships – You

can create measures, such as ShipSalesAmount and

ShipOrderQuantity that use the USERELATIONSHIP function

to travel the inactive relationship on ShipDate. This might

be a preferable approach when you want to use the

existing date table exactly as it is. On the downside, it

requires additional measures. The practice in this lesson

demonstrates how to use USERELATIONSHIP.

 Add a DimShipDate table – You can duplicate DimDate and

rename it to ShipDate. You can implement this with a DAX

calculated table, Power Query, or custom SQL.

Practice

Let's add a new DimShipDate table as a DAX calculated

table.

1.In the Modeling ribbon, click New Table.

2.In the formula bar enter the following formula and press

Enter:

DimShipDate = DimDate

3.Power BI adds a new DimShipDate table to the Fields pane.

4.Create a new inactive relationship

FactInternetSales[ShipDate] -> DimShipDate[Date] (or

FactInternet Sales[ShipDateKey] -> DimShipDate[DateKey])

Output

Create a new report for analyzing

FactInternetSales[SalesAmount] by

DimShipDate[CalendarYear].

Figure 9.1 This report shows sales grouped by the

CalendarYear column in the DimShipDate calculated table.

Analysis

The DimShipDate table behaves just like any other table. You

can extend the table by adding hierarchies or calculated

columns. You can also hide columns you don't need.

Practice

As a progression from the previous practice, change the

DimShipDate formula to return only ship dates that exist in

the FactInternetSales[ShipDate] column. This requires a more

involved formula:

DimShipDate = FILTER(

ADDCOLUMNS(

CALCULATETABLE(DimDate ,

USERELATIONSHIP(FactInternetSales[ShipDateKey], DimDate[DateKey])),

"RowCount", CALCULATE(COUNTROWS(FactInternetSales)))

, NOT ISBLANK([RowCount]))

Output

Observe that the DimShipDate table now has only 1,124

rows compared to 3,652 rows in DimDate. The rest of the

dates don't exist in FactInternetSales.

Analysis

To understand complicated formulas, it might make sense to

work your way from the innermost formula outward. The

CALCULATETABLE function uses the USERELATIONSHIP

function to navigate the FactInternetSales[ShipDateKey] ->

DimDate[DateKey] inactive relationship.

Then the ADDCOLUMNS function is used to add (project) a

new column (RowCount) to DimDate that returns count of

rows in FactInternetSales that are related to the iterated row

in DimDate. The RowCount column is a temporary

expression-based column that only exists within the formula.

As you know by now, when the formula uses an iterator

function, such as ADDCOLUMNS, it needs CALCULATE to

propagate the row context. Finally, the FILTER function

removes rows where RowCount is blank.

NOTE Removing rows from a date table may result in gaps that will make it an

invalid date table. Consequently, time calculations and quick measures for time

intelligence won't work. A date table can't have gaps, as I explain in more detail

in the "Working with Date Tables" lesson.

9.2.2 Generating Date Tables

You can use a simple DAX formula to quickly generate a date

table if you don't have one in your data warehouse database.

DAX has two functions for this purpose:

CALENDAR (<StartDate>, <EndDate>)

CALENDARAUTO ([FiscalYearEndMonth])

CALENDAR returns a calculated table with a single "Date"

column containing a consecutive range of dates between the

StartDate and EndDate you specify as arguments.

CALENDARAUTO scans all tables in the model to find the

earliest and latest dates by evaluating all date columns that

are not calculated columns or included in calculated tables.

Then, it calls the CALENDAR function passing these two

dates as arguments.

CALENDARAUTO takes an optional FiscalYearEndMonth

argument to let you specify the last month of your fiscal

year. For example, if the earliest discovered StartDate is

March 15, 2010 and EndDate is April 27, 2019,

CALENDARAUTO(6) returns a date range between March 15,

2010 and June 30, 2020, so you have enough dates until the

end of the fiscal year.

TIP A designated date table in a corporate data warehouse or being available as

a shared Power BI dataset managed by a data steward is a best practice. Such a

table allows you to incorporate features that are very hard to implement with

Power Query or DAX, such as manufacturing calendars, holiday flags, non-

working days, and others.

Practice

Suppose your company doesn't have a data warehouse and

you're looking for a quick way to generate a date table in

your model. You want your date table to automatically add

rows as new dates appear in the tables, but you want to

avoid spurious dates that are outside a reasonable range

(starting in 2010 and ending in one year from the system

date) and that are probably introduced by data quality

issues. Let's assume that your company's fiscal year ends in

June. Create a new DimMyDate calculated table with this

formula:

DimMyDate = FILTER(CALENDARAUTO(6), YEAR([Date])>=2010 && YEAR([Date])

<= YEAR(TODAY()+1))

As an optional step, add calculated columns for Year and

Month that use the DAX functions YEAR and MONTH

respectively.

Output

The DimMyDate table in the Adventure Works model has a

single column (Date) that contains a consecutive range of

dates between January 1, 2010 and June 30, 2010.

Analysis

Without the FILTER function, CALENDARAUTO(6) returns

dates starting in 1915, but the FILTER function limits the

range starting in year 2010 and ending in one year from the

system date. However, because the maximum date across

all tables is in year 2015, the end date of the calculated

table is June 30, 2015.

9.2.3 Creating Summarized Tables

The DateFirstPurchase column in the DimCustomer records

the date when the customer bought something for the first

time. Let's create a summary table that shows the count of

new customers by month.

Practice

To simplify the formula for the calculate table, start by

adding a calculated column to DimCustomer.

1.Add a MonthJoined calculated column to DimCustomer with

this formula:

MonthJoined = EOMONTH(DimCustomer[DateFirstPurchase], 0)

The EOMONTH function returns the month's end date from

the DateFirstPurchase column without offsetting the date

(the second argument is 0).

2.In the Modeling ribbon, click "New Table" and enter this

formula in the formula bar:

CustomerBase = SUMMARIZECOLUMNS(DimCustomer[MonthJoined],

"CustomerCount", COUNTROWS(DimCustomer))

Figure 9.2 The CustomerBase calculated table summarizes

the count of customers by month based on the date of first

purchase.

Output

The CustomerBase calculated table stores the count of

customers by month (see Figure 9.2).

Analysis

The DAX SUMMARIZECOLUMNS function allows you to group

tables (like the GROUP BY clause in SQL). The formula uses

SUMMARIZECOLUMNS to group DimCustomer by the

MonthJoined column. Like ADDCOLUMNS,

SUMMARIZECOLUMNS lets you add temporary measures by

specifying the measure name and formula. In this case, the

formula adds a new measure named "CustomerCount" that

counts rows. Because SUMMARIZECOLUMNS is not an

iterator, CALCULATE is not required but the formula will

produce the same results if you include it.

9.3 Summary

A DAX calculated table is an expression-based table that you

can use like any other regular table. You specify a formula

that returns a table and Power BI takes care of recalculating

the table when dependent tables are refreshed. You can use

calculated tables to implement role-playing dimensions, date

tables, and summary tables.

PA RT 3

Measures

A data model is rarely complete without important business

metrics. Power BI promotes rapid personal business

intelligence (BI) for essential data exploration and analysis.

Chances are, however, that in real life you might need to go

beyond just simple aggregations, such as counting and

summing. Business needs might require you to extend your

model with metrics that go beyond summing and counting

fields. This is where DAX measures come in. They give you

the needed programmatic power to travel the "last mile" and

unlock the full potential of Power BI.

This part of the book teaches you how to implement

measures. After introducing you to measures, it shows you

how to create basic measures. Then, it moves to more

advanced concepts, such as restricting and ignoring the filter

context, as well as grouping and filtering data.

You'll find the completed exercises and reports for this part

of the book in the Adventure Works model that is included in

the \Source\Part3 folder.

Lesson 10

Understanding Measures

Besides calculated columns, you can use DAX to define

measures. Unlike calculated columns, which might be

avoided by using other implementation approaches,

measures typically can't be replicated in any other way –

they need to be written in DAX. DAX measures are very

useful because they typically aggregate data, such as to

summarize a SalesAmount column or to calculate a distinct

count of customers with sales.

This lesson will help you understand how DAX measures

work and what types of measures are supported by Power BI.

I'll revisit the filter context because it's very important for

measures. You'll also learn how measures compare to

calculated columns and when to use each. You'll find the DAX

formulas for this lesson in \Source\Part3\Understanding

Measures.dax.

10.1 Understanding DAX Measures

I'll define a DAX measure as a runtime calculation that uses a

DAX formula. The most important word in this definition is

"runtime", which means that Power BI executes the measure

formula when the report runs. Unlike calculated columns,

measures never store their formula results. And this makes

measures much more flexible than calculated columns.

10.1.1 Revisiting Filter Context

Recall that every DAX expression is evaluated in a specific

context which consists of a row context and a filter context.

The row context is typically associated with calculated

columns because their formulas are evaluated for each

iterated row in the home table. On the other hand, the filter

context is the default context for measures but DAX iterator

functions, such as FILTER or SUMX, introduce a row context.

Visualizing filter context

DAX measures are evaluated at runtime for each report cell

as opposed to calculated columns which are evaluated once

for each table row. Moreover, measures are evaluated in the

filter context of each cell, as shown in Figure 10.1.

Figure 10.1 Measures are evaluated for each cell, and they

operate in the cell filter context.

This report summarizes the SalesAmount measure by

countries on rows and by years on columns. The report is

further filtered to show only sales for the Bikes product

category. The filter context of the highlighted cell is the

Germany value of the

DimSalesTerritory[SalesTerritoryCountry] field (on rows), the

2008 value of the DimDate[CalendarYear] field (on columns),

and the Bikes value of the DimProduct[ProductCategory] field

(used as a filter).

Although measures are associated with a table, they don't

show in the Data View's data preview pane as calculated

columns do. Instead, they're only accessible in the Fields

pane. When used on reports, measures are typically added

to the Value area of the Visualizations pane.

Relating filter context to SQL WHERE

If you're familiar with the SQL language, you can think of the

DAX filter context as a SQL WHERE clause that limits the

scope of the query. Going back to the report shown in Figure

10.1, when Power BI calculates the expression for that cell, it

scopes the formula accordingly, such as to sum the sales

amount from the rows in the FactResellerSales table where

the SalesTerritoryCountry value is Germany, the

CalendarYear value is 2008, and the ProductCategory value

is Bikes.

NOTE Remember that every DAX measure is evaluated in both row and filter

contexts. Simple measure formulas might not have row context but measures

that use iterators do. For example, as SUMX(<table>, <expression>) iterates

through the rows in the table passed as the first argument, it propagates the row

context to the expression passed as the second argument.

10.1.2 Understanding Measure Types

Although Power BI hides the formula, every time you drop a

field in the Values area of a visual, Power BI creates an

implicit measure. You can also create explicit measures by

entering your own DAX formulas.

Understanding measure types

Power BI Desktop supports two types of measures:

 Implicit measures – To get you started as quickly as

possible with data analysis, Microsoft felt that you

shouldn't have to write formulas for basic aggregations.

Any field added to the Value area of the Visualizations

pane is treated as an implicit measure and is automatically

aggregated based on the column data type. For example,

numeric fields are summed while text fields are counted.

 Explicit measures – You'll create explicit measures when

you need an aggregation behavior that goes beyond the

standard aggregation functions. For example, you might

need a year-to-date (YTD) calculation. Explicit measures

are measures that have a custom DAX formula you specify.

When to use measures

In general, measures are most frequently used to aggregate

data. Explicit measures are typically used when you need a

custom aggregation, such as time calculations, aggregates

over aggregates, variances, and weighted averages.

Suppose you want to calculate year-to-date (YTD) of reseller

sales. As a first attempt, you might decide to add a

SalesAmountYTD calculated column to the Fact ResellerSales

table. But now you have an issue because each row in this

table represents an order line item. It's meaningless to

calculate YTD for each line item.

As a second attempt, you could create a summary table in

the database that stores YTD sales at a specific grain, such

as product, end of month, reseller, and so on. While this

might be a good approach for report performance, it

presents issues. What if you need to lower the grain to

include other dimensions? What if your requirements change

and now YTD needs to be calculated as of any date? A better

approach would be to use an explicit measure that's

evaluated dynamically as users slice and dice the data. And

don't worry too much about performance. Thanks to the

memory-resident nature of the storage engine, most DAX

calculations are instantaneous!

NOTE The performance of DAX measures depends on several factors, including

the complexity of the formula, your knowledge of DAX (and how efficient the

formulas are), the amount of data, and even the hardware of your computer.

While most measures, such as time calculations and basic filtered aggregations,

should perform very well, more involved calculations, such as aggregates over

aggregates or the number of open orders as of any reporting date, will probably

be more expensive.

Comparing calculated columns and measures

Beginner DAX practitioners often confuse calculated columns

and measures. They start with a calculated column (because

it's easier to work with since you see the results), find that it

doesn't produce expected results, then copy the formula into

a measure, and get disappointed that it still doesn't work.

Although calculated columns and measures use DAX, their

behavior and purpose are completely different. Table 10.1

should help you understand these differences.

Table 10.1 Comparing calculated columns and measures.

 Calculated Column Measure

Evaluation Design time (before reports are

run)

Run time (when reports run)

Typical context Row context (and sometimes filter

context)

Filter context (and row context with iterators,

such as SUMX)

Storage Formula results are stored No storage

Performance impact Increase refresh time (for

imported data)

Increase report execution time

Alternative

implementation

Possibly Power Query or custom

SQL

(unless DAX formulas are

required)

Usually no alternatives

Typical usage Row-based expressions, lookups Custom aggregation, such as YTD, QTD,

weighted averages

The most important difference is that Power BI automatically

evaluates calculated columns when data is refreshed

(assuming that data is imported) but before reports run.

Therefore, formulas in calculated columns can't access

runtime conditions, such as the identity of the user who runs

the report or filters that are set by the interactive user. If this

is what you're after, you need a measure and not a

calculated column.

From a performance standpoint, the performance of a

calculated column is no different than any other column, but

calculated columns may increase the table refresh time

assuming that data is imported. By contrast, measures

always impact the report execution time because they don't

have storage and their formulas are evaluated at runtime.

Because measures are dynamic, you can change their

home table (the table in which the measure appears in the

Fields pane) at any time. Just click the measure in the Fields

pane to select it. Then, in the ribbon's Modeling tab, use the

Home Table dropdown (Properties group) to change the

table. Switching the measure home table doesn't affect the

measure. By contrast, a calculated column is always bound

to the table where the calculated column is defined.

10.2 Quiz: Calculated Column or

Measure?

Now that you know about measures and how they compare

to calculated columns, let's go through a few brainstorming

exercises to see if we could implement a calculated column

with a measure and vice versa.

10.2.1 Evaluating Calculated Columns as

Measures

You have quite a few calculated columns implemented

already. You'll go through a few of them and check if they

could be converted to measures.

Concatenating fields

In Lesson 1, you implemented a DimCustomer[FullName]

calculated column to concatenate DimCustomer[FirstName]

and DimCustomer[LastName]. Could you implement it as a

measure? The answer is that although you could, you

probably shouldn't. Technically, we can implement it as a

measure whose most basic formula would be:

FullName (m) = SELECTEDVALUE(DimCustomer[FirstName]) & " " &

SELECTEDVALUE(DimCustomer[LastName])

The SELECTEDVALUE function returns the value of a column

when it's filtered down to only a single row. Remember that

measures are dynamic, and their formula output depends on

the actual report. What happens if we have a report that has

the FirstName and LastName columns? The measure will

return the expected result, except that the report will show

all customers. For example, if a Table visual has FirstName,

LastName, FullName, and SalesAmount, the report will show

all customers irrespective if they have sales or not.

TIP By default, all Power BI visuals remove rows and columns that don't have

data. To change this behavior, expand the dropdown next to the field in whatever

area of the Visualizations pane it's located, and select "Show items with no data".

But what if the report doesn't include FirstName and

LastName columns at all? Then, the measure will return

nothing. In this case, you don't want the measure output to

depend on the data used in the report. So, in this case, a

measure is probably not a good choice.

Relating fields

You implemented FactResellerSales[NetProfit] as a calculated

column with the following formula:

NetProfit = [LineTotal] - (RELATED(DimProduct[StandardCost]) *

FactResellerSales[OrderQuantity])

The tricky part was looking up the product cost from

DimProduct for every row in FactReseller Sales. This

calculated column can be converted as a measure. If the

product cost is not available in FactResellerSales, you can

use the following formula:

NetProfit (m) = SUMX(FactResellerSales, [LineTotal] -

(RELATED(DimProduct[StandardCost]) * FactResellerSales[OrderQuantity]))

This works because SUMX is an iterator function. For every

cell in the report, the formula finds the qualifying rows in

FactResellerSales, iterates each row and looks up the product

cost using the

RELATED function. You'll incur a runtime hit for navigating

the FactResellerSales[ProductKey] ->

DimProduct[ProductKey]. This may add up if the DimProduct

table has millions of products, but it will save storage cost for

the calculated column and reduce refresh time.

If the product cost is already available in

FactResellerSales, then the measure formula becomes

simpler and more efficient because you don't need to

navigate relationships. As it turns out, there is a column

TotalProductCost in FactResellerSales which you can use for

this purpose:

NetProfit (m) = SUMX(FactResellerSales, [LineTotal] –

FactResellerSales[TotalProductCost])

TIP Sometimes, the choice between a calculated column and a measure is a

tradeoff between convenience and performance. Often, the best approach is the

middle road. Look up and save specific columns, such as ProductCost, in the fact

table, even if this results in redundant data (product cost is now in both

DimProduct and FactResellerSales). Then, save storage and reduce refresh times

by using measures instead of calculated columns for every formula that involves

product cost. Remember that denormalization is preferred for data analytics even

if it results in duplicated data.

Grouping and binning

In the previous part of the book, you implemented calculated

columns for grouping and binning, such as DimCustomer[Age

(groups)]. Like concatenating fields, such requirements are

more suitable for custom columns (either calculated or

derived in Power Query or custom SQL).

TIP Consider calculated columns when you need to add text-based custom

columns to a table, such as to create custom groups and bins.

10.2.2 Evaluating Measures as Calculated

Columns

Let's turn the tables now and see if measures can be

replaced with calculated columns and if this comes with any

benefits. You don't have many measures implemented yet,

but you already know the cardinal rule when this can't

happen. If the measure formula depends on runtime

conditions, it must stay a measure.

Measures that depend on filters

In Lesson 1, you created a [SalesAmount RT] measure for

producing a running total as of a given calendar year, which

had this formula:

SalesAmount RT = CALCULATE(

SUM('FactResellerSales'[SalesAmount]),

FILTER(

ALLSELECTED('DimDate'[CalendarYear]),

ISONORAFTER('DimDate'[CalendarYear], MAX('DimDate'[CalendarYear]), DESC)))

Like SELECTEDVALUE, the MAX function returns the last year

in the filter context. So, if the user selects years 2010 and

2011 in a report slicer, MAX('DimDate'[CalendarYear]) will

return 2011. The important part is "as of". The measure

formula summarizes sales at runtime across all dates that

are less than or equal to the last date in the "current" year.

Because calculated columns are evaluated before reports

run, they can't reference selected values. Specifically, the

MAX function in a calculated column will return the last year

across the entire DimDate table, and the formula won't work

as expected.

When measures can be calculated columns

In general, measures might work as calculated columns if

their formula uses columns from just one fact table and they

don't depend on runtime conditions. I've already discussed

that NetProfit can be implemented as both a measure and a

calculated column. And, I already recommended that in such

cases, I'd gravitate toward measures to reduce the number

of calculated columns and storage and decrease the model

refresh time. However, if the measure performance is

inadequate, it might benefit from "materializing" the entire

formula or a part of it as columns. You need to test because

every model and calculation are different.

10.3 Summary

This lesson should help you understand DAX measures and

how they are evaluated. Unlike calculated columns, which

might be avoided by using other implementation

approaches, measures typically can't be replicated in other

ways – they need to be written in DAX and implemented as

measures (not calculated columns).

Lesson 11

Creating Basic Measures

Let's face it – DAX can be overwhelming for novice users.

Wouldn't it be nice to avoid writing formulas? Of course, it

would. Power BI supports different techniques to help you

implement basic measures without requiring too much

knowledge in DAX. In this lesson you'll learn how to work

with implicit measures and quick measures, and how to

implement a percent of total measures. You'll find the DAX

formulas for this lesson in \Source\Part3\Basic Measures.dax.

11.1 Implementing Implicit Measures

To recap quickly what you already know, measures are

typically used to aggregate values. Unlike calculated

columns whose expressions are evaluated at design time for

each row in the table, measures are evaluated at runtime for

each cell in the report. DAX applies the filter context, such as

row, column, and filter selections, when it evaluates the

formula.

11.1.1 Understanding Implicit and Explicit

Measures

Recall from the previous lesson that DAX supports implicit

and explicit measures. An implicit measure is a regular

column that's added to the Value area of the Visualizations

pane. An explicit measure has a custom DAX formula.

Comparing measure types

Table 11.1 summarizes the differences between implicit and

explicit measures.

Table 11.1 Comparing implicit and explicit measures.

Criterion Implicit Measures Explicit Measures

Design Automatically generated Manually created or by using Quick

Measures

Accessibility Use the Visualization pane to change the

aggregation function

Use the formula bar to change the

formula

DAX support Standard aggregation functions only Any valid DAX expression that works

for measures

Implicit measures are automatically generated by Power BI

Desktop when you add a field to the Value area of the

Visualizations pane. By contrast, to create an explicit

measure, you click the New Measure button in the Modeling

ribbon (or right-click a table in the Fields pane, and then click

"New measure"). Then, like calculated columns, you write the

measure formula in the formula bar. Once the implicit

measure is created, you can use the Visualizations pane to

change its aggregation function. By contrast, explicit

measures become a part of the model, and their formula

must be changed in the formula bar (it can't be changed on

the report).

Understanding limitations of implicit measures

Implicit measures are specific to Power BI only. Other clients,

such as Excel, Power BI Report Builder or third-party, don't

support implicit measures. For example, when you use the

Analyze in Excel feature to connect Excel to Power BI, the

Excel PivotTable Fields pane shows only explicit measures.

You can't drag and drop table fields to the pivot's Values

area.

TIP If you plan to support other reporting tools, such as Excel or Tableau, create

explicit measures even for basic aggregations, such as Sales =

SUM(FactInternetSales[SalesAmount]). Otherwise, the user won't be able to

create reports as these tools probably won't support implicit measures.

Implicit measures can only use standard aggregation

functions: Sum, Count, Min, Max, Average, Distinct Count,

Standard Deviation, Variance, and Median. However, explicit

measures can use any DAX formula, such as to define a

custom aggregation behavior like year-to-date.

11.1.2 Working with Implicit Measures

In this exercise, you'll work with implicit measures. This will

help you understand how implicit measures aggregate and

how you can control their default aggregation behavior.

Changing the default aggregation behavior

When you add a column to the Value area, Power BI Desktop

automatically creates an implicit measure and aggregates it

based on the column data type. For numeric columns Power

BI Desktop uses the DAX SUM aggregation function. If the

column data type is Text, Power BI Desktop uses COUNT.

Sometimes, you might need to overwrite the default

aggregation behavior. For example, the CalendarYear column

in the DimDate table is a numeric column, but it doesn't

make sense to sum it up on reports.

1.Make sure that the Data View tab (or Report View tab) is

active. In the Fields pane, click the Calendar Year column in

the DimDate table. This selects the CalendarYear column.

2.In the ribbon's Modeling tab, expand the Default

Summarization drop-down and change it to "Do Not

Summarize". As a result, the next time you use CalendarYear

on a report, it won't get summarized by default.

Figure 11.1 This combo chart shows the correlation

between count of customers and sales.

Practice

Suppose you're trying to determine if there's any seasonality

impact to your business. Are some months slower than

others? If sales decrease, do fewer customers purchase

products? To answer these questions, you'll create the report

shown in Figure 11.1. Using the Line and Clustered Column

Chart visualization, this report shows the count of customers

as a column chart and the sales as a line chart that's plotted

on the secondary axis. You'll analyze these two measures by

month.

Let's start with visualizing the count of customers who

have purchased products by month. Traditionally, you'd add

some customer identifier to the fact table, and you'd use a

Distinct Count aggregation function to only count unique

customers. But the FactInternetSales table doesn't have the

customer business key. The business key

(CustomerAlternateKey) is in DimCustomer. Can you count

on the CustomerAlternateKey column in the Customer table?

NOTE Why not count on the CustomerKey column in FactInternetSales? This will

work if the Customer table handles Type 1 changes only. A Type 1 change results

in an in-place change. When a change to a customer is detected, the row is

simply overwritten. However, chances are that business requirements necessitate

Type 2 changes as well, where a new row is created when an important change

occurs, such as when the customer changes addresses. Therefore, counting on

CustomerKey (called a surrogate key in dimensional modeling) is often a bad idea

because it might lead to overstated results. Instead, you'd want to do a distinct

count on a customer identifier that is not system generated, such as the

customer's account number.

1.Switch to the Report View. From the Fields pane, drag the

CustomerAlternateKey column from the DimCustomer table,

and then drop it in an empty area in the report canvas.

2.Power BI Desktop defaults to a table visualization that

shows all customer identifiers. Switch the visualization type

to "Line and Clustered Column Chart".

3.In the Visualizations pane, drag CustomerAlternateKey from

the Shared Axis area to the Column Values area. Double-click

the field and rename the implicit measure to Count of

Customers.

4.Expand the drop-down in the "Count of Customers" field.

Note that it uses the Count aggregation function, as shown in

Figure 11.2.

Figure 11.2 Text-based implicit measures use the Count

function by default.

5.A product can be sold more than once within a given time

period. If you simply count on the business key, you might

get an inflated count. Instead, you want to count customers

uniquely. Expand the drop-down next to the "Count of

Customers" field in the "Column values" area and change the

aggregation function from Count to Count (Distinct).

6.(Optional) Use the ribbon's Modeling tab to change the

CustomerAlternateKey default summarization to Count

(Distinct) so you don't have to overwrite the aggregation

behavior every time this field is used on a report.

7.With the new visualization selected, check the

DimDate[EnglishMonthName] field in the Fields pane to add

it to the Shared Axis area of the Visualizations pane.

8.If months sort alphabetically on the chart, select the

DimDate[EnglishMonthName] field in the Fields pane. In the

Modeling ribbon, expand the "Sort By Column" dropdown and

select MonthNumberOfYear. This sorts the

DimDate[EnglishMonthName] field by the ordinal number of

the month. If the chart sorting order doesn't change, remove

DimDate[EnglishMonthName] from the chart and add it

again.

Configuring bidirectional filtering

At this point, the chart might be incorrect. Specifically, the

count of customers might not change across months. The

issue is that the aggregation happens over the

FactInternetSales fact table via the DimDate <-

FactInternetSales -> DimCustomer path (notice that the

relationship direction changes). Furthermore, the cardinality

of the DimDate and DimCustomer tables is Many-to-Many

(there could be many customers who purchased something

on the same date, and a repeating customer could buy

multiple times).

1.Switch to the Model View tab. Double-click the

FactInternetSales -> DimCustomer relationship. In the

Advanced Options properties of the relationship, change the

cross-filter direction to Both.

2.Switch to the Report View tab. Note that now the results

vary by month.

3.Drag the FactInternetSales[SalesAmount] field to the Line

Values area of the Visualizations pane. Note that because

SalesAmount is numeric, Power BI Desktop defaults to the

SUM aggregation function.

Analysis

Basic reports may not need explicit measures if the Power BI

standard aggregation functions are enough. The Count of

Customers measure counts distinct customers. Analyzing the

report, you can conclude that seasonality affects sales.

Specifically, the customer base decreases during the

summer. And as the number of customers decreases, so do

sales.

11.1.3 Creating Basic Explicit Measures

As I mentioned previously when comparing implicit and

explicit measures, consider creating explicit measures to

"wrap" basic calculations, such as to summarize or count.

This approach makes your model more useful because users

can use a reporting tool of their choice to create reports.

Practice

Let's create the Count of Customers explicit measure.

1.In the Report (or Data) tab, click the FactInternetSales table

to select it in the Fields pane.

2.In the Modeling ribbon, click New Measure. Alternatively,

right-click the FactInternetSales table in the Fields pane and

then click "New measure". I prefer the latter approach

because it's a sure way to specify the measure's home table.

Otherwise, you have to remember to first select the table in

the Fields pane before pressing the New Measure ribbon

button.

3.Enter the following formula in the formula bar and press

Enter:

Count of Customers = DISTINCTCOUNT(DimCustomer[CustomerAlternateKey])

4.Suppose you want the Count of Customers measure to

show up under the DimCustomer table in the Fields pane.

Click "Count of Customers" in the Fields pane to select it. In

the Modeling ribbon, expand the Home Table dropdown and

select DimCustomer.

5.(Optional) Rename the measure to CustomerCount. Notice

that renaming measures (and columns) doesn't break

existing reports thanks to the Power BI "smart" rename

feature.

REAL LIFE I recommended in Lesson 1 you come up with a naming convention

and stick to it. What if you want your explicit measures to have the same name

as the base columns, such as SalesAmount? Unfortunately, the measure name

must be unique. I typically rename the base numeric columns, such as

SalesAmountBase, hide them, and then implement wrapper explicit measures.

Output

Add the CustomerCount explicit measure to the Values area

of the chart report and notice that it produces the same

result as it's implicit measure counterpart. As an optional

step, publish the Adventure Works.pbix file to the Power BI

Service (powerbi.com). Use the "Analyze in Excel" feature

(https://docs.microsoft.com/power-bi/service-analyze-in-

excel) to create an Excel pivot table connected to the

published model.

Analysis

The measure's home table is just a metadata operation and

changing it doesn't break existing reports. Excel recognizes

DAX explicit measures, allowing you to create Excel pivot

reports. Excel doesn't support Power BI implicit measures

(you can't just drag a field in the Values area of the pivot

report).

https://docs.microsoft.com/power-bi/service-analyze-in-excel

11.2 Working with Built-in Measures

As you've started to realize, DAX is a very powerful

programming language. The only issue is that there is a

learning curve involved. At the same time, there are

frequently used measures that shouldn't require extensive

knowledge of DAX. This is where "show value as" and quick

measures could help.

11.2.1 Implementing "Show value as" Measures

A common requirement is to show the measure value as a

percent of the total. Fortunately, there is a quick and easy

way to meet this requirement because Power BI includes a

feature called "Show value as".

Practice

Let's create a report that shows the percent of total sales

that each country contributes:

1.Add a Matrix visual with

DimSalesTerritory[SalesTerritoryCountry] and Fact Reseller ‐

Sales [SalesAmount] fields in the Values area. Add

DimDate[CalendarYear] to the Columns area.

2.Add the FactResellerSales[SalesAmount] field one more

time to the Values area.

3.In the Values area of the Visualizations pane, expand the

dropdown next to the second SalesAmount field and choose

"Show value as". Select "Percent of column total". Compare

your results with Figure 11.3. Notice that the "%CT

SalesAmount" now shows the contribution of each country to

the column total.

4.(Optional) In the Visualizations pane (Fields tab), double-

click the "%CT Sales Amount" field and rename it to % of

Total Sales.

Figure 11.3 The %CT SalesAmount field shows each value

as a percent of the column total.

Analysis

"Show value as" changes an existing measure in place to

show its output as a percentage of a column, row, or grand

total. It doesn't create a new measure. Power BI implements

this feature internally so don't try to find or change the DAX

formula. If you require more control, I'll walk you through

implementing an explicit measure in the " Changing Filter

Context" lesson that does the same thing but with a DAX

formula you write.

11.2.2 Working with Quick Measures

Before further honing in on your DAX skills, let's look at

another feature that may help you avoid, or at least, help

you learn DAX. Quick measures are prepackaged DAX

formulas for common analytical requirements, such as time

calculations, aggregates, and totals. Unlike "show value as",

quick measures are implemented as DAX explicit measures,

so you can see and change the quick measure formula.

Practice

In the first lesson, you used a running total quick measure.

Let's practice another quick measure to produce a year-to-

date (YTD) sales report (see Figure 11.4).

Figure 11.4 The SalesAmount (qm) YTD measure

accumulates sales over years and it's produced by the "Year-

to-date total" quick measure.

1.Because the quick measure formula will use the DimDate

table, as a prerequisite you need to mark this table as a date

table. In the "Working with Date Tables" lesson, I'll explain in

more detail why this change is necessary. In the Fields pane,

right-click DimDate and click "Mark as date table". In the

"Mark as date table" window, expand the dropdown and

select the Date column. Click OK.

2.Create a new Table visualization that has

DimDate[CalendarYear], DimDate[EnglishMonthName], and

FactResellerSales[SalesAmount] fields in the Values area.

3.Right-click the FactResellerSales table in the Fields pane

and then click "New quick measure". Alternatively, you

expand the dropdown next to SalesAmount in the Fields pane

(or visual's Values area) and then click "New Quick Measure".

4.In the "Quick measures" window (see Figure 11.5),

expand the Calculation drop-down. Observe that Power BI

supports various quick measures. Select "Year-to-date total"

under the Time Intelligence section.

Figure 11.5 Power BI supports various quick measures to

meet common analytical requirements.

5.Drag the SalesAmount field from the FactResellerSales

table to the "Base value" area.

6.Drag the Date field from the DimDate table to the Date

area. Click OK.

7.Power BI adds a new "SalesAmount YTD" field to the

FactResellerSales table in the Fields pane.

8.In the Fields pane, rename the "SalesAmount YTD" field to

SalesAmount (qm) YTD.

9.Add the "SalesAmount (qm) YTD" field to the report.

Analysis

Notice the field accumulates sales within each year as it

should. Click the "SalesAmount (qm) YTD" field in the Fields

pane. Notice that the formula bar shows this formula:

SalesAmount (qm) YTD =

IF(

ISFILTERED('DimDate'[Date]),

ERROR("Time intelligence quick measures can only be grouped or filtered by the

Power BI-provided date hierarchy

or primary date column."),

TOTALYTD(SUM('FactResellerSales'[SalesAmount]), 'DimDate'[Date])

)

This formula checks if the DimDate[Date] field is directly or

indirectly filtered in the report by using the ISFILTERED

function. If this is the case, the formula uses the TOTALYTD

function to calculate YTD sales. Unlike "show value as", once

you create the quick measure, it becomes just like any

explicit DAX measure. You can rename it or use it on your

reports. However, you can't go back to the "Quick measures"

dialog. To customize the measure, you must make changes

directly to the formula, so you still need to know some DAX.

11.3 Summary

Power BI comes with features that can help you avoid writing

DAX for basic calculations. You can aggregate any field on a

report by using any of the standard aggregation functions,

such as sum or average. The "Show value as" feature lets

you implement "percent of total" measures. And you can

create quick measures for some common calculations, such

as YTD.

Lesson 12

Determining Filter Context

Power BI evaluates measures in the filter context of each

report cell. No matter how you slice and dice the report,

measures produce the correct results, and you don't have to

worry about the internals. Sometimes, however, you many

need to evaluate the filter context, such as to change the

measure aggregation depending on the user selection. This

lesson teaches you how to do just this. You'll find the DAX

formulas for this lesson in \Source\Part3\Determining Filter

Context.dax.

12.1 Understanding Filter Functions

DAX includes several functions to help you obtain filters

applied to the filter context in which a measure operates.

They include functions to help you determine if a column is

filtered or cross-filtered, and functions to obtain the selected

values.

12.1.1 Understanding Filtering and Cross-

filtering

The first three functions (ISFILTERED, ISCROSSFILTERED, and

ISINSCOPE) help you determine if a column is directly or

indirectly filtered.

Determining direct filters

A table column is filtered directly when the column is

explicitly filtered. A column could be directly filtered when it

participates in a report filter or slicer, or when it appears in a

visual. ISFILTERED returns TRUE if any direct filters are

applied on a specific column or any column in a table.

ISFILTERED (<TableNameOrColumnName>)

Determining cross filtering

A column is cross filtered when there is no direct filter on the

column itself but on other columns in the same table or in a

related table. You can use the ISCROSSFILTERED function to

check if a column or table is cross-filtered and this function

has the same definition as ISFILTERED.

Determining hierarchy scope

Finally, the ISINSCOPE (<ColumnName>) function returns

TRUE if the column is filtered directly and if it's a grouping

column for the current row in the report. I'll clarify this with

the report in the next section.

12.1.2 Understanding Applied Filters

Suppose you want to apply different calculations at different

levels of a typical date hierarchy, consisting of Year, Quarter,

and Month levels. As a first step, you need to understand

what hierarchy level is filtered. By "hierarchy", I mean fields

that represent logical 1:M relationships (a year has many

quarters, a quarter has many months), and not necessarily a

Power BI hierarchy that you can implement in the Fields

pane.

Practice

Start by creating three measures to test how the three

functions affect the filters on the DimDate ‐

[EnglishMonthName] column. If you reference the

\Source\Part3\Adventure Works, you'll find these measures in

the Filters folder under the DimDate table in the Fields pane.

TIP You can organize the model metadata by placing fields in display folders. To

do so, go to the Model View tab, select the field in the Fields pane, and enter the

display folder name in the "Display folder" property in the field's Properties pane.

Add the following measures to the DimDate table:

Month (Filtered) = ISFILTERED(DimDate[EnglishMonthName])

Month (Cross-filtered) = ISCROSSFILTERED(DimDate[EnglishMonthName])

Month (IsInScope) = ISINSCOPE(DimDate[EnglishMonthName])

Outcome

Let's create a report to see the effect of the three measures.

1.Create a Matrix report with DimDate[CalendarYear],

DimDate[CalendarQuarter], and DimDate ‐

[EnglishMonthName] fields in the Rows area, and the three

measures in the Values area.

2.Expand the year and quarter levels (see Figure 12.1).

Figure 12.1 This report demonstrates how you can

determine direct and indirect filters applied to a column.

3.Drop a slicer visual on the report and bind it to

DimDate[EnglishMonthName].

4.Select and deselect a month in the slicer and observe the

changes in the visual's Total line.

Analysis

Month (Filtered) returns True only when the

EnglishMonthName is explicitly filtered. This can happen

when the current report cell is on a report row that has the

month, or when a slicer or filter applies a filter to this

column. Month (Cross-filtered) returns True when any column

from the DimDate table is on the report or explicitly filtered.

However, ISCROSSFILTERED would return False if the report

includes columns from other tables.

Month (IsInScope) returns identical results as Month

(filtered) if no direct filter is applied to EnglishMonthName.

However, when this column is filtered by the slicer,

ISFILTERED returns True in the Total line, while ISINSCOPE

returns False in the Total line. Therefore, ISINSCOPE is useful

when you need to overwrite the measure formula for the

report totals. Using ISFILTERED to check for report totals is

not reliable as it changes depending on the user-specified

filters, so you should use ISINSCOPE instead.

12.2 Getting Selected Values

Now that you know how to determine the filter context, the

next step will be to obtain the selected values. For example,

this could be useful to determine the report date that the

user has selected in a report slicer, or to determine the start

and end range of the user selection. DAX offers several ways

to get the selected values and has introduced even more

functions to simplify this task. Next, we'll review the most

popular functions to obtain a single selected value and range

limits (in the case of selecting multiple values).

12.2.1 Working Single-Value Filters

If you expect a single value from the filter context, you can

use the functions SELECTEDVALUE or VALUES.

Checking for a single value

You can use the HASONEVALUE function to determine if a

column has been filtered down to a single value as a result of

direct or indirect filters (another function HASONEFILTER

checks only for direct filters). HASONEVALUE is typically used

with the IF statement. For example, the following measure

checks if the FactInternetSales[SalesOrderNumber] column is

filtered down to a single value, and if this is the case, it

constructs a link that includes the order number.

IF (HASONEVALUE(FactInternetSales[SalesOrderNumber]), "http://prologika.com?

OrderNumber=" &

VALUES (FactInternetSales[SalesOrderNumber]))

Getting the value

The formula uses the VALUES function. Recall that when the

column is filtered down to one value, VALUES returns that

single value; otherwise you'll get an error. To simplify

checking for single values, DAX has another function called

SELECTEDVALUE.

SELECTEDVALUE (<ColumnName> [, <AlternateResult>])

This function is a shortcut to:

IF(HASONEVALUE(<ColumnName >), VALUES(<ColumnName >),

<AltnernateResult>)

You might think you can shorten the above formula by using

SELECTEDVALUE:

SELECTEDVALUE(FactInternetSales[SalesOrderNumber])

However, this formula will return an empty value when the

customer hasn't ordered anything, causing the formula to

produce a link with no order number for every customer on

the report. So, you'd probably still need to check if you have

a filter selection before you do something with it, so the

formula with the IF statement is a better option.

12.2.2 Working with Multi-value Filters

What if the user has filtered multiple values or selected a

date period and you want to get the first or last date? When

numeric values are filtered, you can use the MIN function to

get the first selected value and the MAX function to get the

last selected. The following measure (BOP stands for

"beginning of period") returns the first filtered date:

BOP = MIN (DimDate[Date])

In the case of filtering dates, you can also use the FIRSTDATE

and LASTDATE functions. The following measure achieves

the same result:

BOP = FIRSTDATE (DimDate[Date])

For non-numeric values, you can use the FIRSTNONBLANK

and LASTNONBLANK functions. For example, the following

measure returns the last filtered product category.

SelectedCategory = LASTNONBLANK(DimProduct[EnglishProductCategoryName],

TRUE)

12.3 Working with Filter Selection

Let's put what you've learned in practice and create

measures that react to filters applied by the end user

running the report. In the first exercise, you'll create a link

that navigates the user to a web page and passes the

"current" order number. The second exercise teaches you

how to overwrite the measure aggregation across a

hierarchy.

12.3.1 Creating Links

Consider the report shown in Figure 12.. This report

displays customer's sales and allows the user to click a link

to navigate the user to another system, such as to see the

order details.

Figure 12.2 The interactive user can click a link that

navigates to another web page and passes the order

number.

Practice

Start by creating a measure to construct the link.

1.Add the OrderLink measure to FactInternetSales with the

following formula:

OrderLink = IF (HASONEVALUE(FactInternetSales[SalesOrderNumber]),

"http://prologika.com?OrderNumber=" & VALUES

(FactInternetSales[SalesOrderNumber]))

2.Add a Table visual and add DimCustomer[FullName],

FactInternetSales[OrderDate] (if it shows the date hierarchy,

expand the dropdown to OrderDate in Values area and select

OrderDate to ignore the hierarchy),

FactInternetSales[SalesOrderNumber],

FactInternetSales[SalesAmount], and the

OrderLink measure.

3.In the Fields pane, click the OrderLink field to select it. In

the Modeling ribbon, expand the Data Category drop-down

and select Web URL. The link is now clickable, but it might

not be desirable to show the URL.

4.(Optional) With the Table visual selected, select the Format

tab in the Visualizations pane, expand the Values area, and

then turn on the "URL icon" slider. This replaces the link with

an icon.

Analysis

HASONEVALUE returns True for every row in the report

because the visual includes the SalesOrderNumber field. But

the filtered field doesn't have to be in the visual or directly

filtered in a report filter or slicer. If the filter context can

narrow down the field to one value, HASONEVALUE will return

True and the link will still work. As an optional step, remove

the SalesOrderNumber field from the visual. The OrderLink

field will now show empty values for customers who

submitted multiple orders on the same date.

12.3.2 Implementing Aggregates Over

Aggregates

You face a difficult requirement. Management has requested

a complicated aggregation for counting customers. At a level

lower than calendar year, such as quarter, month, and date,

the measure must return the distinct count of customers.

However, at the year level, it must return the average of the

customer count at the quarter level. This scenario is

commonly referred to as "aggregate over aggregate".

Practice

Change the CustomerCount measure formula as follows:

CustomerCount = IF (

ISFILTERED (DimDate[Date]) || ISFILTERED (DimDate[EnglishMonthName]) ||

ISFILTERED (DimDate[CalendarQuarter]),

DISTINCTCOUNT (DimCustomer[CustomerAlternateKey]),

AVERAGEX (

ADDCOLUMNS (

SUMMARIZE (DimDate, DimDate[CalendarQuarter]),

"CustomerDCount", CALCULATE (DISTINCTCOUNT (

DimCustomer[CustomerAlternateKey]))

),

[CustomerDCount]))

Output

Create a report to test the measure:

1.Add a Matrix visual. Add DimDate[CalendarYear] and

DimDate[CalendarQuarter] to the Rows area, and

CustomerCount to the Values area.

2.Right-click any year on the report and click Expand -> All.

Compare your results with Figure 12.3.

Figure 12.3 The CustomerCount measure computes a

simple average over the year's quarters.

Analysis

The formula checks if the filter context is at a date, month,

or quarter level. If that's the case, the measure returns the

distinct count as the original measure. Otherwise, the

formula uses the AVERAGEX function. Notice that you must

check for lower hierarchy levels first because ISFILTERED

returns TRUE at any level. The first argument is the

summarized DimDate table at the CalendarQuarter level.

Then, the formula uses ADDCOLUMNS to add the

CustomerDCount column that computes the customer

distinct count but at the quarter level.

The net effect is that for each year, SUMMARIZE produces

a table with four rows (one for each quarter) and two

columns: CalendarQuarter and AverageOfCustomers. Then,

AVERAGEX computes a simple average over the projected

column "CustomerDCount". Because ADDCOLUMNS is an

iterator, CustomerDCount needs CALCULATE to transition the

row context into a filter context.

NOTE The formula can use just SUMMARIZE to add CustomerDCount without

requiring ADDCOLUMNS and CALCULATE. However, using ADDCOLUMNS is better

from a performance standpoint. I discuss aggregation functions (SUMMARIZE,

SUMMARIZECOLUMNS, and ADDCOLUMNS) in more detail in the "Grouping Data"

lesson.

12.4 Summary

When you implement measures you often need to evaluate

the filter context. Use the DAX functions ISFILTERED,

ISCROSSFILTERED, and ISINSCOPE to determine if a column

is filtered directly or indirectly. Use HASONEVALUE,

SELECTEDVALUE, and VALUES when the column is filtered

down to a single value.

Lesson 13

Working with Variables

We'll take a short break from measure formulas to introduce

DAX variables. Variables can help you simplify your DAX

formulas, make them more efficient, and get around some

annoying DAX limitations. This lesson starts by explaining

how variables work and then walks you through exercises to

practice variables. You'll find the DAX formulas for this lesson

in \Source\Part3\Working with Variables.dax.

13.1 Understanding Variables

Like variables in programming languages, a DAX variable

stores the result of a formula to reuse it later. Unlike

programming languages, however, once a DAX variable is

calculated, its value doesn't change. So, think of a DAX

variable more as a constant than a storage location that can

be changed at any time. Although this sounds somewhat

limiting, DAX variables are very useful.

13.1.1 Defining Variables

You define a DAX variable inside the formula of a measure or

a calculated column. You use the special VAR keyword for the

variable declaration.

VAR <name> = <expression>

Understanding syntax

The name of the variable can't have delimiters, such as

single quotes or square brackets, which also means that it

can't have spaces. The variable expression can be any valid

DAX expression that returns a scalar value or a table. You

can define multiple variables in a formula. Consider this

measure formula that calculates the year-over-year

percentage variance:

YoY% =

VAR Sales = SUM (FactResellerSales[SalesAmount])

VAR SalesLastYear = CALCULATE (SUM (FactResellerSales[SalesAmount]),

SAMEPERIODLASTYEAR (DimDate[Date]))

RETURN

IF (NOT ISBLANK(Sales) && NOT ISBLANK(SalesLastYear), DIVIDE (Sales -

SalesLastYear, Sales))

This formula defines two variables:

 Sales – This variable computes the current sales for the

selected period. For example, the report shows sales by

year, the Sales variable returns the sales for each year.

 SalesLastYear – This variable calculates the sum of sales

for the same period in the previous year.

When the formula includes variables, it must also include a

RETURN statement, which is followed by a formula that

returns the result from the measure or calculated column

(calculated columns can also use variables). In this case, the

expression uses the IF operator to check if both variables

return non-blank values and to perform a safe divide using

the DIVIDE function (to avoid a division by zero if the current

year's sales are zero). When the report is run, DAX will

substitute the variables in the measure formula with their

calculated values.

NOTE As it stands, DAX doesn't support global variables, such as a variable that

is declared once and reused in multiple DAX expressions and calculated columns.

Therefore, although this may lead to redundant variable declarations, you must

declare the same variable in every formula you plan to use it.

Understanding the variable evaluation context

Variables are evaluated where they are declared (not in the

formula that uses them), and their evaluation context can't

be overwritten. To make the formula simpler, you might

attempt to rewrite it as follows:

YoY% =

VAR Sales = SUM (FactResellerSales[SalesAmount])

VAR SalesLastYear = CALCULATE (Sales, SAMEPERIODLASTYEAR (

DimDate[Date]))

RETURN

IF (NOT ISBLANK(Sales) && NOT ISBLANK(SalesLastYear), DIVIDE (Sales -

SalesLastYear, Sales))

The idea here is to reuse the Sales variable when computing

the last year's sales in the SalesLastYear variable.

Unfortunately, the formula always returns zero. This is

because Power BI has already computed the value of the

Sales variable at the point of its declaration and its context

can't be further overwritten. That's why it's useful to think of

variables as constants. You can't treat them as measures and

use CALCULATE to overwrite their evaluation context.

13.1.2 Why Use Variables?

You can implement measures and calculated columns

without variables. However, you should evaluate your

formulas and use variables when it makes sense. Let's go

through the potential benefits.

Simplifying syntax

As you can see from the YoY% formula, variables can help

you simplify the formula syntax and make it more intuitive. If

you don't use variables, you must repeat expressions:

YoY% = IF (NOT ISBLANK(SUM (FactResellerSales[SalesAmount])) &&

NOT ISBLANK(CALCULATE (SUM (FactResellerSales[SalesAmount]),

SAMEPERIODLASTYEAR (DimDate[Date]))),

DIVIDE (SUM (FactResellerSales[SalesAmount]) - CALCULATE (SUM (

FactResellerSales[SalesAmount])

, SAMEPERIODLASTYEAR (DimDate[Date])), SUM (

FactResellerSales[SalesAmount])))

This code is difficult to read. Granted, instead of variables,

you can refactor this year's sales and last year's sales as

separate measures. This would be a good approach if these

measures are useful on their own. But using variables can

also improve performance, which brings us to the next

benefit.

Improving performance

As I mentioned, variables are evaluated once. When the

query optimizer encounters a variable, it optimizes the query

plan because it knows that it must evaluate the variable only

once in a given evaluation context. This results in a faster

execution plan when the same expression appears multiple

times in a formula.

Working around DAX limitations

DAX has its own share of idiosyncrasies that can humble

both novice and experienced users. Consider a common

example where a measure attempts to return sales for the

last date in the Date table (the last date filtered in a filter or

a slicer). What makes this common is that many real-life

calculations require measures that are calculated as of the

user-specified date ("as of" date).

Sales=CALCULATE(SUM(FactResellerSales[SalesAmount]),

MAX(DimDate[CalendarYear]))

As simple and logically correct the measure is, it fails with

the error "A function ‘MAX’ has been used in a True/False

expression that is used as a table filter expression. This is

not allowed." This is what the documentation states about

this error:

"The filter expression, MAX('DimDate'[CalendarYear])

attempts to return the largest numeric value in the

CalendarYear column. However, in context of the measure

expression, it cannot be passed as a table filter expression to

the CALCULATE function, causing an error."

This is an example where documentation has left some

ground for improvement. First, the MAX function doesn't

return a table but a scalar value. Second, the CALCULATE

function can take filters. The actual issue is that DAX

surrounds the MAX formula with a hidden CALCULATE and it's

ambiguous in what context the maximum date should be

evaluated.

To be consistent with the way filters propagate, it should

be in the filter context outside of CALCULATE, but in the row

context of the as-of date, which becomes a filter context with

the MAX formula. But this is not what you would expect, so

DAX fails safely with the error. The workaround suggested by

the documentation is to filter the DimDate table and pass it

as a table filter to calculate. This requires ignoring the filter

context on the DimDate table, only to overwrite it later with

the "as of" date.

Sales=CALCULATE(SUM(FactResellerSales[SalesAmount]),

FILTER(ALL(DimDate[CalendarYear]), [CalendarYear] =

MAX(DimDate[CalendarYear])))

A better solution is to use a variable. This example uses an

EOP (End of Period) variable to return the last date:

Sales=

VAR EOP = MAX(DimDate[CalendarYear])

RETURN

CALCULATE(SUM(FactResellerSales[SalesAmount]), [CalendarYear] = EOP)

Because the EOP variable is evaluated where it’s declared,

there is no hidden context and the formula works.

Unfortunately, DAX doesn't support global variables, so you

need to include this variable in every measure that

references the end of the period.

13.2 Practicing Variables

Now that you know about variable fundamentals, let's

practice different usage scenarios where variables could be

helpful. The next exercises demonstrate how variables can

help you simplify formulas, improve performance, and work

around DAX complexities and limitations.

13.2.1 Calculating Variances

In this exercise, you'll implement YoY% calculation without

and with variables to calculate the percent variance of

FactResellerSales[SalesAmount].

Practice

Add the following two measures to FactResellerSales:

SalesAmount YoY% (slow) =

IF (

NOT ISBLANK (SUM (FactResellerSales[SalesAmount]))

&& NOT ISBLANK (

CALCULATE (

SUM (FactResellerSales[SalesAmount]),

SAMEPERIODLASTYEAR (DimDate[Date])

)

),

DIVIDE (

SUM (FactResellerSales[SalesAmount])

- CALCULATE (

SUM (FactResellerSales[SalesAmount]),

SAMEPERIODLASTYEAR (DimDate[Date])

),

SUM (FactResellerSales[SalesAmount])

)

)

SalesAmount YoY% =

VAR Sales =

SUM (FactResellerSales[SalesAmount])

VAR SalesLastYear =

CALCULATE (

SUM (FactResellerSales[SalesAmount]),

SAMEPERIODLASTYEAR (DimDate[Date])

)

RETURN

IF (

NOT ISBLANK (Sales) && NOT ISBLANK (SalesLastYear),

DIVIDE (Sales - SalesLastYear, Sales)

)

Output

To test the measures, add a Table visual with

DimDate[CalendarYear] and the two measures, as shown in

Figure 13.1.

Figure 13.1 Both measures produce the same results.

Analysis

Both measures produce the same results. However,

[SalesAmount YoY%] is easier to read. Moreover, it's faster.

Using the techniques discussed in the "Queries" part of this

book to analyze the query performance with DAX Studio (you

can also use the Power BI Desktop Performance Analyzer,

which I demonstrated in the first lesson), I obtained two sets

of statistics (see Figure 13.2).

[SalesAmount YoY%] (statistics shown in the right half) is

almost twice as fast as its non-variable counterpart.

Specifically, it generates only seven queries to the storage

engine (versus 13) and its overall execution time is 42 ms

(versus 64). Although in this case the difference is

milliseconds (the Adventure Works model has only a few

thousand rows across all tables), it should be more

pronounced with more involved calculations and larger data

volumes.

Figure 13.2 Performance statistics shows that variables

reduce the query execution time almost in half.

13.2.2 Implementing Filter Expressions

In the lesson "Filtering Data", you saw how a variable can be

used as a substitute for using the EARLIER function in a

calculated column. Let's now see how variables can help you

work around some of the DAX limitations. Next, you'll

implement a measure that returns the inception to date (ITD)

sales. The SalesAmount ITD measure returns sales from the

earliest date with data until the end date of the current

period.

Practice

Attempt to add the following measure to FactResellerSales:

SalesAmount ITD =

CALCULATE (

SUM (FactResellerSales[SalesAmount]),

FactResellerSales[OrderDate] <= MAX (DimDate[Date]),

ALL (DimDate)

)

This measure doesn't work. Specifically, when you press

Enter to commit the formula, Power BI Desktop shows the

error "A function ‘MAX’ has been used in a True/False

expression that is used as a table filter expression. This is

not allowed." Change the formula as follows to fix it:

SalesAmount ITD =

VAR EOP = MAX (DimDate[Date])

RETURN

CALCULATE (

SUM (FactResellerSales[SalesAmount]),

FactResellerSales[OrderDate] <= EOP,

ALL (DimDate))

Output

As an optional step, add the SalesAmount ITD measure to

the report you produced in the previous exercise (see Figure

13.3).

Analysis

The formula uses a variable EOP that returns the end of the

period selected on the report. This avoids the error. The ALL

(DimDate) filter removes the current filter as a result of the

Fact Reseller Sales[OrderDateKey] -> DimDate[Date]

relationship.

Figure 13.3 The SalesAmount ITD measure sums sales from

the earliest date until the end of the period.

13.3 Summary

DAX variables help you simplify the formula syntax, improve

performance, and work around issues with the evaluation

context. Consider variables whenever they could be

beneficial, such as to avoid repeating expressions in a

formula.

Lesson 14

Changing Filter Context

In the "Filtering Data" lesson, you learned how you can

manipulate the filter context when implementing calculated

columns. This lesson builds upon this knowledge, but it

focuses on the measure specifics. First, I'll show you how to

reduce the filter context by applying filters and navigating

inactive relationships. Then, I'll show you how to ignore

existing filters. You'll find the DAX formulas for this lesson in

\Source\Part3\Changing Filter Context.dax.

14.1 Overwriting the Filter Context

To briefly revisit what has been covered already, measures

operate in a specific filter context, which is affected by the

cell location on the report and additional filters applied to the

measure. You must use the CALCULATE function to overwrite

or ignore the filter context. If there is a mother of all DAX

functions for measures, CALCULATE will be it. You won't go

far with measures if you don't know CALCULATE.

14.1.1 Revisiting CALCULATE for Measures

Recall from Lesson "Aggregating Data" that CALCULATE has

this definition:

CALCULATE (<Expression> [, <Filter> [, <Filter> [, …]]])

Besides the expression passed to the first argument,

CALCULATE takes one or more filter arguments and they can

filter columns or tables. Each filter is treated as an AND

condition. The order of the filter arguments doesn't matter.

NOTE While the order of the arguments doesn't matter, their internal evaluation

is a different story. Remember that filters from ALL, ALLEXCEPT, ALLSELECTED,

and USERELATIONSHIP have a higher precedence than other filter arguments. In

other words, regular filter arguments can't overwrite the effect of these functions

because they expand the filter context.

You can apply multiple (AND or OR) filter conditions to the

same column. To filter different columns, you must provide

multiple filter arguments, typically one for each column you

need to filter (which might give you a better performance

anyway). More complicated filter conditions, such as OR

conditions involving different columns, require the FILTER

function. I also showed you in the previous lesson that when

the filter argument references an aggregation function, such

as MAX, you can avoid the error by using a variable.

Practice

Add a measure "Revenue by Top Tier Customers" to

FactInternetSales that returns the sum of Fact ‐

InternetSales[SalesAmount] for customers where the value

of the DimCustomer[SalesRank] column is less than or equal

to 100.

Profit by Top Tier Customers = CALCULATE(SUM(FactInternetSales[SalesAmount]),

DimCustomer[SalesRank] <= 100)

Output

Add a Table visual and bind it to DimCustomer[FulName] and

the new measure. Sort by "Profit by Top Tier Customers" in

descending order and compare your results with Figure

14.1.

Figure 14.1 This report shows top-ranked customers and

their overall sales.

Analysis

Because the measure needs to filter on a column, the

formula uses CALCULATE with a filter argument. Since the

formula doesn't require an iterator function, such as SUMX or

FILTER, it doesn't use RELATED. In fact, using RELATED will

give you an error "The column DimCustomer[SalesRank]

either doesn't exist or doesn't have a relationship to any

table available in the current context".

You can specify a more advanced filtering condition on the

same column. For example, the following formula filters

customers with a sales rank between 80 and 100.

Profit by Top Tier Customers = CALCULATE(SUM(FactInternetSales[SalesAmount]),

DimCustomer[SalesRank] >= 80 && DimCustomer[SalesRank] <= 100)

Practice

Change the "Profit by Top Tier Customers" to return only

customers in Germany or France. All three of these formulas

meet this requirement:

Profit by Top Tier Customers = CALCULATE(SUM(FactInternetSales[SalesAmount]),

DimCustomer[SalesRank]<=100, DimSalesTerritory[SalesTerritoryCountry] =

"France" || DimSalesTerritory[SalesTerritoryCountry] = "Germany")

Profit by Top Tier Customers = CALCULATE(SUM(FactInternetSales[SalesAmount]),

DimCustomer[SalesRank]<=100,

OR (DimSalesTerritory[SalesTerritoryCountry] = "France",

DimSalesTerritory[SalesTerritoryCountry] = "Germany"))

Profit by Top Tier Customers = CALCULATE(SUM(FactInternetSales[SalesAmount]),

DimCustomer[SalesRank]<=100,

DimSalesTerritory[SalesTerritoryCountry] IN {"France", "Germany"})

Analysis

Because now you need to filter on a different column, you

must pass another filter argument to CALCULATE. The

following formula produces an error "This expression

contains multiple columns, but only a single column can be

used in a True/False expression that is used as a table filter

expression" because it attempts to filter on two columns in

the same filter argument.

Profit by Top Tier Customers = CALCULATE(SUM(FactInternetSales[SalesAmount]),

DimCustomer[SalesRank]<=100 && DimSalesTerritory[SalesTerritoryCountry] IN

{"France", "Germany"})

You can also use the FILTER function to filter on multiple

columns in a single filter expression, but the syntax gets

more complicated and probably less efficient than using

CALCULATE with multiple filter arguments.

Profit by Top Tier Customers = CALCULATE(SUM(FactInternetSales[SalesAmount]),

FILTER(

FactInternetSales, RELATED(DimCustomer[SalesRank])<=100 &&

RELATED(DimSalesTerritory[SalesTerritoryCountry]) IN {"France", "Germany"})

)

TIP As a best practice, use CALCULATE with multiple filter arguments to filter on

multiple columns when AND (&&) filter conditions are needed. You'll get a shorter

syntax and probably better performance.

14.1.2 Navigating Inactive Relationships

Power BI relationships are the foundation of ad-hoc analysis

because users don't have to create custom queries to join

tables. But existing Power BI limitations don't allow

relationships everywhere in the model, forcing you to

inactivate some relationships. These relationships are still

useful because the CALCULATE filter arguments can navigate

inactive relationships programmatically using the

USERELATIONSHIP function.

Practice

Add a ShipSalesAmount measure that calculates the sum of

FactInternetSales[SalesAmount] using the

FactInternetSales[ShipDateKey] -> DimDate[DateKey]

inactive relationship.

ShipSalesAmount = CALCULATE(SUM(FactInternetSales[SalesAmount]),

USERELATIONSHIP(FactInternetSales[ShipDateKey], DimDate[DateKey]))

Output

Create a Table report with DimDate[CalendarYear],

FactInternetSales[SalesAmount], and

FactInternetSales[ShipSalesAmount], as shown in Figure

14.2.

Figure 14.2 This report compares sales by order date and

ship date.

Analysis

USERELATIONSHIP forces the measure to navigate the

FactInternetSales[ShipDateKey] -> DimDate[DateKey]

inactive relationship instead of the default

FactInternetSales[OrderDateKey] -> DimDate[DateKey]

active relationship. In other words, the ShipSalesAmount

measure analyzes sales by the date the order was shipped.

The equivalent SQL statement would be:

select CalendarYear, SUM(SalesAmount)

from FactInternetSales fis

left join DimDate d on fis.ShipDateKey = d.DateKey

group by d.CalendarYear

14.2 Removing Filters

I've previously introduced you to DAX functions for ignoring

the filter context in calculated columns (ALL, ALLEXCEPT,

ALLSELECTED). You can also use these functions as filter

arguments to CALCULATE to implement measures. This

allows you to implement measures that require a modified

filter context, such as a measure for implementing percent of

total.

14.2.1 Implementing Percent of Total

In the lesson "Creating Basic Measures", I showed you how to

use the Power BI "Show value as" built-in feature to quickly

create a percent of total measures. However, the issue was

that you can't access and modify its formula. Next, I'll show

you how to implement a similar explicit measure in case you

need more control over the formula.

Practice

Follow these steps to add a PercentOfTotal measure to

DimSalesTerritory:

1.Make sure that the Data View (or Report View) is selected.

In the Fields pane, right-click the DimSalesTerritory table and

click "New measure".

2.In the Formula field, enter the following formula and press

Enter:

PercentOfTotal = DIVIDE (SUM(FactResellerSales[SalesAmount]),

CALCULATE (SUM(FactResellerSales[SalesAmount]), ALL(DimSalesTerritory)))

3.In the Fields pane, select the

DimSalesTerritory[PercentOfTotal] measure. In the Formatting

section of the ribbon's Modeling tab, change the Format

property to Percentage with two decimal places.

Output

Add a Matrix visual with

DimSalesTerritory[SalesTerritoryCountry] on rows,

DimDate[Calendar Year] on columns, and the

FactResellerSales[SalesAmount] and

DimSalesTerritory[PercentOfTotal] measures in the Values

area (see Figure 14.3).

Figure 14.3 The custom Percent OfTotal measure shows the

contribution of the country sales to the overall sales.

Analysis

To avoid division by zero, the expression uses the DIVIDE

function, which performs a safe divide and returns a blank

value when the denominator is zero. The nominator formula

calculates the sales for the "current" country (determined by

the cell filter context). For example, the measure in the cell

next to Canada will return the Canada sales.

The denominator uses the CALCULATE function to

overwrite the filter context. The formula passes

ALL(DimSalesTerritory) as a second argument in the

CALCULATE function to force the evaluation of

SUM(FactResellerSales[SalesAmount]) across all countries

(and across all values of any other column in

DimSalesTerritory).

14.2.2 Counting Pending Orders

Let's implement a measure that counts pending orders. The

order is pending (unfulfilled) when it's placed but not yet

shipped as of the report date. In other words, the measure

needs to count orders where the report date is between the

order date and ship date.

Practice

Add the PendingOrdersCount measure to FactInternetSales

with the following formula:

PendingOrdersCount =

VAR EOP = MAX (DimDate[Date])

RETURN

CALCULATE (

DISTINCTCOUNT (FactInternetSales[SalesOrderNumber]),

FactInternetSales[ShipDate] >= EOP,

FactInternetSales[OrderDate] <= EOP

, ALL(DimDate)

)

Output

Create a Matrix report with DimDate[CalendarYear],

DimDate[EnglishMonthName], and DimDate[Date] in the

Rows area and the PendingOrdersCount measure in Values

(see Figure 14.4).

Figure 14.4 The PendingOrdersCount measure count orders

where the report date is between OrderDate and ShipDate.

Analysis

The EOP (end of period) variable returns the last date in the

current time period. For example, for year 2010 EOP returns

December 31, 2010. However, if you expand to January

2010, EOP returns January 31, 2010. Then the formula

calculates the distinct count of the SalesOrderNumber

column using the DISTINCTCOUNT function, where EOP is

between the order date and ship date.

The ALL function ignores the filter context by the

FactInternetSales[OrderDateKey] -> DimDate [Date] active

relationship. If you don't ignore it, the report will produce the

same results at the month level, but it will understate the

pending order count at the date level. That's because only

orders whose order date falls in the current period will be

evaluated. However, you might have an order that was

placed outside the current date period but not shipped yet.

Hence, it's important to ignore the active relationship to

DimDate.

14.2.3 Nesting Measures

Lastly, I want to finish this lesson with a best practice when it

comes to measures that overwrite filters. It's common to

have measures that depend on other measures but overwrite

their context. For example, the insurance industry typically

requires measures such as Count of Claims, Count of Open

Claims, Count of Closed Claims, and so on. To reduce

maintenance effort, you should chain measures together

where new measures piggyback on existing measures.

Practice

In the lesson "Creating Basic Measures", you implemented a

CustomerCount measure that counted customers who placed

orders on the Adventure Works website. This measure had a

rather complicated formula that applied different

aggregations across different levels of the date hierarchy.

Suppose you need another measure that counts customers

who are professionals (their occupation is Professionals).

Instead of repeating the entire formula, you can use the

following formula:

CustomerCount (pros) = CALCULATE([CustomerCount],

DimCustomer[EnglishOccupation] = "Professionals")

DAX supports an alternative and shorter syntax when the

first argument of CALCULATE is an existing measure:

[measure] (filter, filter)

Using this syntax, you can rewrite the formula as follows:

CustomerCount (pros) = [CustomerCount] (DimCustomer[EnglishOccupation] =

"Professionals")

Analysis

Avoid duplicating formulas. Instead, build upon existing

measures by adding or removing filters. If you follow this

best practice, you can change the formula in one place, and

all dependent measures will inherit the changes. For

example, if the requirements change and all measures that

count customers need to count now active customers, you

can change only the base CustomerCount measure.

14.3 Summary

CALCULATE is the bedrock of measure formulas. CALCULATE

is a very versatile function but it can be overwhelming to

understand. This lesson demonstrated how you can use

CALCULATE to narrow or expand the filter context.

Lesson 15

Grouping Data

Sometimes, you might face a requirement that calls for

grouping data. For example, in the lesson "Determining Filter

Context" you've implemented an aggregate-over-aggregate

measure that produces different results across levels in a

date hierarchy. This lesson goes into more detail of how to

group data before you can calculate metrics on the

aggregated results. It also teaches you how to add

expression-based columns when using the grouping

functions. You'll find the DAX formulas for this lesson in

\Source\Part3\Grouping Data.dax.

15.1 Understanding Grouping

Functions

CALCULATE (with possibly FILTER) should help you tackle

most of your measure requirements. Grouping data is

typically required to implement aggregate-over-aggregate

measures, such as a measure that aggregates at a month

level in one way but in a different way at a year level. As a

relatively new language, DAX has had its fair share of

growing pains and this is no more evident than in its

grouping functions. I'll quickly go through these functions

and provide recommendations about their usage. Table

15.1 compares at a glance the three grouping functions that

I'll discuss and lists their main characteristics.

Table 15.1 DAX supports various grouping functions.

Function Notes Pros Cons

ADDCOLUMNS/

SUMMARIZE

Returns a summary table with optional

extended columns. Retains column

values with no data.

Less restrictions Avoid extended columns

in SUMMARIZE (use

ADDCOLUMNS)

GROUPBY Creates a summary of the input table

grouped by the specified columns.

Excludes column values with no data.

Can aggregate

over

extended columns

Requires an extended "X"

function for extended

columns

SUMMARIZE

COLUMNS

Creates a summary table for the

requested totals over a set of groups.

Excludes column values with no data.

Best performance Doesn't always work in

modified filter context

15.1.1 Understanding SUMMARIZE

SUMMARIZE is the DAX earliest function for grouping data.

As its name suggests, SUMMARIZE summarizes (groups) a

table by one or more columns. It can add optional measures

to extend the return table.

Understanding SUMMARIZE syntax

SUMMARIZE has the following definition:

SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[,

<name>, <expression>]…)

The first argument must be a table or an expression that

returns a table, such as FILTER. Next, you must specify at

least one column from the table or a related table that you

want to group by. For example, the CustomerCount measure

used SUMMARIZE to group the DimDate table by the

CalendarQuarter column.

SUMMARIZE (DimDate, DimDate[CalendarQuarter])

The result is a table with a single column (CalendarQuarter)

containing the unique values in CalendarQuarter.

SUMMARIZE acts as a SQL left join and retains columns with

no data. The same result could be achieved with VALUES(

DimDate[CalendarQuarter]) with the small difference that

SUMMARIZE doesn't sort the grouped column values in any

way while VALUES returns them sorted (as they will appear

on a report).

EVALUATE

ADDCOLUMNS (

VALUES (DimDate[CalendarQuarter]),

"CustomerDCount", CALCULATE (DISTINCTCOUNT (

DimCustomer[CustomerAlternateKey]))

)

Understanding extended columns

SUMMARIZE can also add one or more expression-based

columns by using the name-expression syntax. These

columns are sometimes referred to as extended columns.

They are typically custom measures whose formulas

aggregate data (like SQL GROUP BY clause with aggregates,

such as SUM). For example, you can add a CustomerDCount

column that counts distinct customers for each quarter.

SUMMARIZE (DimDate,

DimDate[CalendarQuarter]),

"CustomerDCount", DISTINCTCOUNT (DimCustomer[CustomerAlternateKey])

The equivalent SQL query would be:

select d.CalendarQuarter, COUNT (distinct CustomerAlternateKey)

from DimDate d left join FactInternetSales fis on fis.OrderDateKey = d.DateKey

left join DimCustomer c on fis.CustomerKey = c.CustomerKey

group by d.CalendarQuarter

Understanding ADDCOLUMNS

The problem with extended columns and SUMMARIZE is that

they don't perform well, and Microsoft can't "fix" it without

potential side effects. For best performance, add extended

columns with ADDCOLUMNS that wraps SUMMARIZE instead

of adding them in SUMMARIZE:

ADDCOLUMNS (

SUMMARIZE (DimDate, DimDate[CalendarQuarter]),

"CustomerDCount", CALCULATE (DISTINCTCOUNT (

DimCustomer[CustomerAlternateKey]))

)

Note that because ADDCOLUMNS is an iterator, you must

include CALCULATE (not required for extended columns in

SUMMARIZE) when the extended column uses an aggregate

function.

15.1.2 Understanding Other Grouping Functions

To simplify grouping and improve performance, Microsoft

introduced two other functions that are worth mentioning:

GROUPBY and SUMMARIZECOLUMNS.

Understanding GROUPBY

The GROUPBY function has the same syntax as SUMMARIZE

but it requires an "X" aggregate function, such as SUMX or

AVERAGEX, for the formula in the extended column.

GROUPBY(FactInternetSales,

DimDate[CalendarQuarter],

"SumSales", SUMX(CURRENTGROUP(), FactInternetSales[SalesAmount])

)

Unlike SUMMARIZE, GROUPBY removes column values with

no data, so it acts as a SQL inner join. In addition, it sorts the

results in the way the column values are sorted in the model.

Instead of specifying a table as a first argument to the "X"

function, you use a special CURRENTGROUP() construct.

Evaluate the performance of GROUPBY and

ADDCOLUMNS/SUMMARIZE and choose the one that

performs better when extended columns use "X" functions.

This could be an issue if you want to use DISTINCTCOUNT

which doesn't have an "X" counterpart.

NOTE GROUPBY could be especially useful with nested groups where an outer

group aggregates an extended column in an inner group.

ADDCOLUMNS/SUMMARIZE doesn't support this.

Understanding SUMMARIZECOLUMNS

To make it easier for Power BI to group data in DAX report

queries, DAX added a SUMMARIZECOLUMNS function, which

has this syntax:

SUMMARIZECOLUMNS(<groupBy_columnName> [, < groupBy_columnName

>]…, [<filterTable>]…[, <name>, <expression>]…)

Like SUMMARIZE and GROUPBY, SUMMARIZECOLUMNS takes

one or more columns group by. By contrast, it also takes filter

tables which are especially useful for DAX queries. For

example, a variable can filter the date table as per the user's

selection on the report and pass it as an argument to

SUMMARIZESCOLUMNS to restrict the formula only for that

date. Like GROUPBY, SUMMARIZECOLUMNS excludes column

values with no data from the results so it acts as a SQL inner

join.

SUMMARIZECOLUMNS should be more efficient than

SUMMARIZE because it utilizes the storage engine better.

Unfortunately, SUMMARIZECOLUMNS doesn't work in

aggregate-over-aggregate measures and in other measures

that modify the filter context. For example, you can attempt

the following formula:

AVERAGEX (

SUMMARIZECOLUMNS (DimDate[CalendarQuarter],

"CustomerDCount", DISTINCTCOUNT (DimCustomer[CustomerAlternateKey])

),

[CustomerDCount]

)

However, you'll get the error "SummarizeColumns() and

AddMissingItems() may not be used in this context".

Therefore, you must resort to ADDCOLUMNS/SUMMARIZE or

GROUPBY for measures that require computing aggregates

over aggregates.

15.2 Implementing Grouping

Measures

Now that you know about the DAX grouping functions, let's

take them for a ride. But before this, I'd like to emphasize

when they are not required, and when you can use

CALCULATE instead. In this practice, you'll implement a

measure to calculate the average order sales amount for

orders that have shipped as of the report date.

15.2.1 Using CALCULATE

Requirements can be tricky so make sure you understand

what the business rules are and how they are supported by

your data. Suppose you are tasked to calculate the average

order sales amount by ship date. As you know by now, every

row in FactResellerSales represents an order line item.

Should you calculate the average order amount by just

averaging the line items? Or, do you need to calculate the

order total before you aggregate? If the former approach is

OK, then CALCULATE is all you need.

Practice

Add an AvgOrderRevenue measure to FactResellerSales with

the following formula:

AvgOrderRevenue =

CALCULATE (

AVERAGE (FactResellerSales[SalesAmount]),

USERELATIONSHIP(FactResellerSales[ShipDateKey], DimDate[DateKey])

)

Output

To test the measure, create a Table visual with

DimDate[CalendarYear] and AvgOrderRevenue, as shown in

Figure 15.1.

Figure 15.1 The AvgOrderRevenue measure averages the

order line item revenue.

Analysis

It's important to understand how this measure works. The

AVERAGE function computes a simple average by summing

up FactResellerSales[SalesAmount] for each row (order line

item) in Fact Reseller Sales whose ship date falls in the period,

and then divides the sum by the number or rows. The

formula uses USERELATIONSHIP to force the calculation over

the FactResellerSales[ShipDateKey] -> DimDate[DateKey]

relationship.

What if you need to perform some arithmetic before

aggregating the data, such as to compute the fulfillment

time as Ship Date – Order Date? Well, the first argument of

CALCULATE needs to be a column or a measure. So, you

could add a calculated column to FactResellerSales with this

formula:

FulfilledDuration = DATEDIFF(FactResellerSales[OrderDate],

FactResellerSales[ShipDate], DAY)

But what if you need to implement multiple measures and

creating calculated columns becomes counterproductive?

The second option is to switch to AVERAGEX and avoid

calculated columns whatsoever. This requires some formula

reshuffling.

AvgOrderFulfilledTime =

CALCULATE (

AVERAGEX (

FactResellerSales,

DATEDIFF (FactResellerSales[OrderDate], FactResellerSales[ShipDate], DAY)

),

USERELATIONSHIP(FactResellerSales[ShipDateKey], DimDate[DateKey])

)

Because AVERAGEX requires a table as a first argument, the

formula passes FactResellerSales. The advantage of

AVERAGEX is that it can take an expression that is calculated

for each row in the table (in the row context). The formula

uses the DATEDIFF function to calculate the time difference

in days between the line item order date and ship date.

15.2.2 Working with Grouping Functions

Let's move on now to the second version of the average

order revenue, which requires an average over the order

total. Therefore, you need to aggregate at the order level

before computing the average. This requires using one of the

aggregation functions I discussed in this lesson.

Practice

First, let's use ADDCOLUMNS/SUMMARIZE for the new version

of the AvgOrderRevenue measure. Add a new measure

AvgOrderRevenue (o) to FactResellerSales with the following

formula

AvgOrderRevenue (o) =

AVERAGEX (

CALCULATETABLE (

ADDCOLUMNS (

SUMMARIZE (FactResellerSales, FactResellerSales[SalesOrderNumber]),

"OrderTotal", CALCULATE (SUM (FactResellerSales[SalesAmount]))

),

USERELATIONSHIP (FactResellerSales[ShipDateKey], DimDate[DateKey])

),

[OrderTotal]

)

Output

Add AvgOrderRevenue (o) to the report and compare your

results with Figure 15..

Figure 15.2 The AvgOrderRevenue (o) measure computes

an average on top of the sales order total.

Analysis

Starting from SUMMARIZE and going outwards, first this

formula groups on FactResellerSales [SalesOrderNumber].

Then, ADDCOLUMNS adds an extended column to sum the

SalesAmount column. Next, CALCULATETABLE modifies the

filter context by using USERELATIONSHIP to navigate the

inactive relationship. Since ADDCOLUMNS returns a table,

you need CALCULATETABLE (not CALCULATE) to make this

change.

Now that you have the summary table, you're ready to

compute the average. The formula uses AVERAGEX because

it conveniently takes a table as the first argument. The

second argument is the extended column added by

ADDCOLUMNS.

Practice

The AvgOrderRevenue (o2) measure uses GROUPBY instead

of ADDCOLUMNS/SUMMARIZE:

AvgOrderRevenue (o2) =

AVERAGEX (

CALCULATETABLE (

GROUPBY (

FactResellerSales,

FactResellerSales[SalesOrderNumber],

"OrderTotal", SUMX (CURRENTGROUP (), FactResellerSales[SalesAmount])

),

USERELATIONSHIP (FactResellerSales[ShipDateKey], DimDate[DateKey])

),

[OrderTotal]

)

Analysis

GROUPBY has the same syntax as SUMMARIZE. The

difference is that you need to use SUMX and

CURRENTGROUP(). Using the profiling techniques you'll learn

in the "Queries" part of the book, you can see that this

version uses only two queries to the storage engines versus

four with ADDCOLUMNS/SUMMARIZE. Therefore, it makes

sense to test GROUPBY and use it if it performs better.

15.3 Summary

Most measure requirements can be met with CALCULATE or

CALCULATETABLE. Use the DAX grouping functions to

aggregate data when you need to produce aggregates over

aggregates. Consider GROUPBY when you can use an "X"

function for the aggregation. Otherwise, stick to

ADDCOLUMNS/SUMMARIZE.

PA RT 4

Time intelligence

One of the most common data analytics tasks is

implementing time calculations, such as year-to-date,

parallel period, previous period, period-over-period

variances, and so on. DAX has about 40 functions for

extending your data models with time calculations, but you

don't need to know them all.

This part of the book teaches you how to implement time

intelligence. Since time intelligence requires a date table, it

starts by teaching you how to work with built-in and custom

date tables. After revisiting quick measures for time

intelligence, it shows you how to implement custom formulas

for more advanced requirements, such as custom date filters

and semi-additive measures. You'll also learn how to

centralize time intelligence formulas by using calculation

groups.

You'll find the completed exercises and reports for this part

of the book in the Adventure Works and Inventory models

that are included in the \Source\Part4 folder.

Lesson 16

Working with Date Tables

Time intelligence requires a date table. Otherwise, DAX time

intelligence functions won't work, or they will produce wrong

results. This lesson starts by explaining what options Power

BI supports for date tables. You'll learn the difference

between built-in and custom date tables. I'll also share best

practices for configuring date tables. You'll find the DAX

formulas for this lesson in \Source\Part4\Working with Date

Tables.dax.

16.1 Understanding Date Tables

A date table stores a range of dates that you need for data

analytics. A data table must meet the following

requirements:

 Day granularity – The granularity of the date table must be

at a day level.

 Consecutive range – The date table must store a

consecutive range of dates. No gaps are allowed.

 Date column – The date table must include a column of a

Date data type. This is the only column required but

typically a date table includes other columns for flexible

exploration, such as CalendarQuarter, CalendarYear, and

so on.

16.1.1 Understanding Auto-generated Date

Tables

To avoid requiring you to create custom date tables, Power BI

Desktop is configured by default to automatically generate

date tables and hierarchies. In Power BI Desktop, this is

controlled by the Auto Date/Time setting in File -> Options

and Settings -> Options (Data Load tab in the Current File

section). This feature generates a hidden date table for every

column of a Date type. It also adds a hierarchy with Year,

Quarter, Month, and Day levels under each date field in the

Fields pane.

Understanding advantages of built-in date tables

The obvious advantage of the built-in date tables is that you

may not need a custom date table. You can start analyzing

your data by using the auto-generated Year, Quarter, Month,

and Day levels (also called variations). Time intelligence

formulas in quick measures support built-in date tables too.

Understanding disadvantages of built-in date tables

The main disadvantage of the built-in date tables is that they

are not flexible. You can't access the actual tables and

change them. You can't add additional fields or levels, such

as to have a fiscal calendar or a flag to mark workdays. In

addition, these can severely bloat your model as you

discovered in the "Understanding Storage" lesson. Not only

does Power BI generate a table for every date field, but it

also adds rows for the entire date range.

For example, let's say you have a date with a minimum

value of January 1, 1900 and a maximum value of December

31, 2200. When creating the hidden date table, Power BI will

populate it with 109,573 rows. If you have 10 date fields like

this, you've now added over one million rows just for date

tables! This can severely bloat your data model. Therefore, if

you plan to use auto-generated date tables, leave this

feature on but monitor the size of your data model.

TIP As a best practice, have a designated Date table and turn off auto-generated

date tables. You can use the Vertipaq Analyzer to check the storage of the built-in

date tables (all these tables whose names start with

LocalDateTable_<guid>). Consider turning off built-in date tables if they consume

excessive storage.

Using built-in date tables

You can use the levels of the built-in date hierarchies like any

Power BI hierarchy. For example, you can drag the entire

hierarchy or just one level to your visual. The left screenshot

in Figure 16.1 shows how the built-in hierarchies appear in

the Fields pane. Power BI automatically generates the

hierarchy and names it Date Hierarchy, but you can rename

it. The right screenshot shows the hierarchy and its levels

(variations) appear in the Values area if you add a date field

(DueDate) that has auto-generated hierarchy.

Figure 16.1 You can use auto-generated hierarchies and

levels like any other any Power BI hierarchy or field.

Notice that you can remove hierarchy levels in the

Visualizations pane if you don't need them on the report. If

you only want to see the date field (and not the hierarchy) in

your visual, you can expand the dropdown next to the home

field in the Visualizations pane and switch from the hierarchy

to the date field, as shown in Figure 16.1.

Disabling built-in date tables

You can turn off the Auto Date/Time setting in your Power BI

Desktop file to disable built-in date tables. You must turn it

off for each Power BI Desktop file (currently, there isn't a

global default setting). This is what happens when you turn

this setting off:

 Power BI deletes all built-in date tables in the model. You

can't turn them on and off per field or table.

 If there are existing measures, such as quick measures,

that reference the date variations, they will be invalidated.

You must change their formulas to reference the

corresponding fields in your custom Date table.

Power BI supports special syntax for referencing auto-

generated date levels. For example, if you create a quick

year-to-date measure that references a date field with an

auto-generated date hierarchy, Power BI generates this

formula:

SalesAmount YTD =

IF(

ISFILTERED('FactInternetSales'[OrderDate]),

ERROR("Time intelligence quick measures can only be grouped or filtered by

the Power BI-provided

date hierarchy or primary date column."),

TOTALYTD(

SUM('FactInternetSales'[SalesAmount]),

'FactInternetSales'[OrderDate].[Date]

)

)

'DimDate'[Date].Date references the Date variation of the

auto-generated date table for the Fact Internet ‐

Sales[OrderDate] field. Once you disable the Auto Date/Time

setting, this variation won't exist anymore, and the formula

will be invalidated. To fix it, just change the formula to

reference the Date column in your Date table as follows

(changes are shown in bold):

SalesAmount YTD =

IF(

ISFILTERED(DimDate[Date]),

ERROR("Time intelligence quick measures can only be grouped or filtered by

the Power BI-provided

date hierarchy or primary date column."),

TOTALYTD(

SUM('FactInternetSales'[SalesAmount]),

DimDate.[Date]

))

16.1.2 Understanding Custom Date Tables

A best practice is to have a separate date table and write

time calculations to use this table. This approach is

preferable because it's more flexible (you control what fields

and hierarchies you want), reduces storage, and centralizes

maintaining your date table in one place. A date table

typically includes additional columns for flexible time

exploration, such as Quarter, Year, Fiscal Quarter, Fiscal Year,

Holiday Flag, and so on. It may also include fiscal and

manufacturing calendars.

Creating custom date tables

There are a few ways to create a custom date table. You can

import it from your corporate data warehouse. You can

maintain it in an Excel file and import it from there. As I

demonstrated in the lesson "Implementing Calculated

Tables", you can also use the CALENDAR and

CALENDARAUTO functions to auto-generate a date table. You

can even generate it in Power Query using custom code

written in the "M" query language.

And, as I explained in the same lesson, you can have more

than one date table in your model. This could be useful if you

want to aggregate the same fact table by multiple dates,

such as order date, ship date, and due date.

Marking a date table

You should go one step further by telling Power BI about your

date table(s) by marking as such (right-click the date table in

the Fields pane and click "Mark as date table" -> "Mark as

date table"). Marking a date table accomplishes several

things:

 Disables the Power BI-generated date table for the Date

field in the Date table. Note that it doesn't remove the

built-in date tables from the other tables unless you

disable the Auto Date/Time setting in File -> Options and

Settings -> Options (Data Load tab).

 Lets you use your Date table for time calculations in Quick

Measures.

 Makes DAX time calculations work even if the relationship

between a fact table and the Date table is created on a

field that is not a date field, such as a smart integer key in

the format YYYYMMDD. If the table is not marked, you

must use ALL(DimDate) in your DAX time intelligence

formulas to make them work.

 When Analyze in Excel is used, enables special Excel date-

related features when you use a field from the Date table,

such as date filters.

You can unmark a date table at any time by going through

the same steps (right-click the table and then click "Mark as

date table" -> "Mark as date table"). If you want to change

the settings, such as to use a different date column, go to

"Mark as date table" -> "Date table settings".

What about analysis by time?

One existing limitation of the automatic in-line date

hierarchy feature is that it doesn't generate time levels, such

as Hour, Minute, and so on. If you require time analysis,

create a Time table with the required levels and join it to the

fact table. This usually involves the following steps:

1.Create a DimTime table. Typically, this table is grained at a

minute level, so it will have 1,440 rows to store all minutes in

a day. There are plenty of scripts on the Internet for

generating such a table. I recommend the primary key of this

table be of the Time data type (so you can join it directly to

the corresponding foreign key in the fact table).

2.If this is not done already, in your fact table break the

column of the DateTime data type into two columns: one

that stores the date and another column that stores the

time.

3.Join the two columns to their respective dimension tables. If

you need to analyze the data by time, use DimTime, or you

can use it together with DimDate to analyze the data by date

and time.

16.2 Working with Date Tables

If you haven't done so, let's take a moment to make the

necessary configuration changes to the date tables in the

Adventure Works model. I'll also show you why leaving the

date fields in the fact tables could be beneficial in some

cases.

16.2.1 Working with Built-in Date Tables

Because by default Power BI auto-generates date tables,

every date field in our model has a hidden date table behind

it.

Practice

Let's take a moment to get familiar with the built-in date

tables.

1.Open the Adventure Works model in Power BI Desktop.

2.In the Fields pane, expand FactInternetSales, and then

expand the OrderDate field. Notice that it has a Date

Hierarchy. This tells you that the model has built-in date

tables.

3.Right-click the FactInternetSales table and click "New quick

measure".

4.Configure the measure as shown in Figure 16.2 and click

OK.

Figure 16.2 You can create quick time intelligence

measures using the built-in date tables.

Output

Power BI creates SalesAmount YTD measure in the

FactInternetSales table.

1.Add a Table visual and bind it to the

FactInternetSales[OrderDate] date hierarchy and the

Internet Sales [SalesAmount YTD] measure. Verify that the

measure works as expected.

2.Go to File -> Options and settings -> Settings and turn off

the Auto Date/Time setting in Data Load tab (the Current File

section). Click OK.

3.Back to the report, notice that the visual fails to render. If

you click the detail link, you'll see the error "Column

reference in 'OrderDate' in table 'FactInternetSales' cannot

be used with a variation 'Date' because it doesn't have any".

In addition, there is a warning icon preceding the

SalesAmount YTD measure in the Fields pane indicating that

the measure is invalidated.

Analysis

I recommend you decide upfront if you'll use a custom date

table or built-in date tables. If your reports or measures

reference built-in date tables, they will be invalidated once

you disable the "Auto Date/Time setting".

16.2.2 Working with Custom Date Tables

In the previous practice, you disabled the built-in date tables

because you had a custom DimDate date table. In this

practice, you'll mark this table as such to let Power BI

validate it. You'll also change the quick measure formula to

use the DimDate.

Practice

Star by marking the date table.

1.In the Fields list, right-click the Date table and then click

"Mark as date table" -> "Mark as date table".

2.Expand the "Date column" drop-down and select the Date

column (you must select a column that has a Date data

type), as shown in Figure 16.3. Press OK once Power BI

validates the date table to ensure that it meets the

requirements I listed at the beginning of this lesson.

Figure 16.3 Mark your date table(s) to let Power BI know

about them.

3.Change the formula of the FactInternetSales[SalesAmount

YTD] measure to reference

DimDate[Date].

Output

The FactInternetSales[SalesAmount YTD] measure validates

successfully and the report works again. If you right-click the

Date table and then click "Mark as date table" again, you

should see a green check mark indicating that the DimDate

table is already marked.

Analysis

As I explained, marking a date table has important

advantages, including letting Power BI validate its data so

that your DAX time intelligence formulas work as expected.

Practice

Now that you have a custom date table, should you leave the

date fields behind in the fact table? This will surely confuse

the end user as to which date to use. However, having these

fields could be very beneficial to overwrite the selection in

filters and slicers. Suppose you have a dashboard-looking

report that has a slicer to let the user select one or more

years by filtering DimDate[CalendarYear]. However, there is

a chart that must overwrite the filter selection and show a

trend across several years.

1.Add a Column Chart visual and bind it to

FactInternetSales[OrderDate] in the Axis area and Fact ‐

InternetSales[SalesAmount] in the Values area.

2.Add a slicer and bind it to DimDate[CalendarYear], as

shown in Figure 16.4.

Figure 16.4 You can use date fields in fact tables to

overwrite global filters.

3.This step is important to prevent the slicer from filtering

the chart. Click the slicer to select it. In the Format ribbon,

click "Edit interactions". You should see additional icons

appearing outside the chart. Click the None icon.

4.Use the Filter pane to apply a chart-level filter, such as to

filter OrderDate after January 1, 2014.

Output

The chart has a visual-level filter on OrderDate that works

independently from the global filter on CalendarYear, as you

can see by changing the year in the slicer. More importantly,

the chart can be reconfigured to show sales by any other

date field in FactInternetSales, such as DueDate or ShipDate.

Analysis

You can use the date fields in fact tables to overwrite global

filters and to allow the user to slice the report by dates that

might not even have relationships to your custom date table,

such as OrderDate, ShipDate, DueDate. Unfortunately, Power

BI doesn't allow you to turn on built-in date hierarchies

selectively, such as to enable the Year-Quarter-Month-Day

hierarchy on the DueDate field but not for other dates.

Hence, if the built-in date tables don't consume too much

space, consider leaving them enabled for maximum

flexibility.

16.3 Summary

Date tables are very important to any model because almost

every model needs time intelligence. In this lesson, you

learned about built-in and custom date tables. As a best

practice, use a custom date table but consider leaving built-

in date tables if you need their auto-generated variations

and if they don't bloat the model. Don't forget to mark your

custom date table as such.

Lesson 17

Quick Time Intelligence

You've seen how quick measures deliver pre-packaged DAX

measure formulas. This lesson continues exploring the quick

measures for time intelligence. It will help you understand

how time intelligence formulas work, and how you can

modify the formulas to tailor them to your needs. You'll find

the DAX formulas for this lesson in \Source\Part4\Quick Time

Intelligence.dax.

17.1 Understanding Quick Time

Intelligence

Currently, Power BI packs seven quick measures specific to

time intelligence. Table 17.1 groups them in three

categories: "To-date", "Period-over-period % change", and

"Rolling average".

Table 17.1 This table shows the quick time intelligence measures

organized in three categories.

Category Time Intelligence Formulas Used Description

To-date TOTALYTD, TOTALQTD, TOTALMTD Computes the "to-date" value from

the first day of the period until the

current date.

Period-over-period %

change

DATEADD Computes the % change between

two periods.

Rolling average ENDOFMONTH, STARTOFMONTH,

DATESBETWEEN, LASTDATE,

DATESINPERIOD

Computes an average over several periods.

17.1.1 Understanding "To-date" Measures

DAX has three functions for computing "to-date" running

aggregates: TOTALYTD, TOTALQTD, and TOTALMTD. They

have the same syntax with the exception that TOTALYTD has

an optional fourth argument to let you specify the year's end

date.

TOTALYTD (<Expression>, <Dates> [, <Filter>] [, <YearEndDate>])

Understanding syntax

The first argument is the expression to be evaluated. For

example, if you need to compute the sum of

FactInternetSales[SalesAmount], you'll pass

SUM(FactInternetSales[SalesAmount]). Or, if you have an

existing measure, you can specify the measure name in

square brackets, such as [NetProfit].

Since your model might have multiple date tables (or

multiple built-in date hierarchies), the second argument

must reference a column of a Date data type that will be

used to evaluate the expression over time, such as

DimDate[Date]. If you use a built-in date table, you need to

reference the Date variant, such as

FactInternetSales[OrderDate].Date.

The Filter argument is optional. Like CALCULATE, you can

pass a filter condition or a table to filter the results further.

For example, if you don't mark your date table and the

relationship to DimDate is not on a date column, you must

pass ALL(DimDate) to the Filter argument for the function to

work. However, if the relationship is on a date column and

the custom date table is marked, Power BI adds the ALL

function in the formula for you and you can omit it.

Lastly, TOTALYTD takes an optional YearEndDate

argument, which could be handy for working with fiscal

years. For example, if your fiscal year ends in June, you can

pass "6/30", "Jun 30", or "30 June", or any string that

resolves to a month/day. Unfortunately, you can't pass a

measure (you must provide a static string).

TIP As a best practice, have a designated Date table with the calendars you

need, such as regular, fiscal, and manufacturing calendars. If you do this, you

have more flexibility and don't have to specify the YearEndDate argument for

fiscal years. Not to mention that quarters also need to be offset for fiscal

calendars, but TOTALQTD doesn't accept a YearEndDate argument.

Understanding evaluation

The "to-date" functions help you avoid constructing the date

ranges for time intelligence measures. For example,

TOTALYTD (SUM[FactInternetSales[SalesAmount],

DimDate[Date]) is a shortcut to:

CALCULATE (SUM (FactInternetSales[SalesAmount]), DATESYTD (DimDate[Date]

))

The DATESYTD function removes any filters from the

DimDate table and then applies a filter to select all dates

from the beginning of the period until the current date. In the

case of TOTALYTD, the filter looks like this:

CALCULATE (

SUM (FactInternetSales[SalesAmount]),

FILTER (

ALL (DimDate[Date]),

DimDate[Date] <= MAX (DimDate[Date]) && YEAR (DimDate [Date]) = YEAR (

MAX (DimDate [Date]))

))

As you know by now, the MAX function returns the largest

value in the filter selection. So, if the user sets the report

date to July 4, 2013, MAX(DimDate[Date]) will return this

date. The FILTER function filters all dates where their year

matches the current year and that are before or equal to the

current date.

17.1.2 Understanding Variance Measures

There are three variance quick measures for computing

period-over-period percentage variance at year, quarter, and

month levels. The Quick Measures window allows you to

specify the number of periods to lag, such as in the case

when you need to calculate the variance between parallel

periods.

Understanding syntax

This is what the quick measure formula looks like for Year-

over-year change with the default lag of one year and SUM

aggregation:

SalesAmount YoY% =

VAR __PREV_YEAR =

CALCULATE(

SUM('FactResellerSales'[SalesAmount]),

DATEADD('DimDate'[Date], -1, YEAR)

)

RETURN

DIVIDE(SUM('FactInternetSales'[SalesAmount]) - __PREV_YEAR, __PREV_YEAR)

Understanding evaluation

This formula defines a VAR __PREV_YEAR variable which

calculates the SUM('FactResellerSales' [SalesAmount]) for the

same period last year. Like the "to-date" functions, DATEADD

takes a date column as the first argument. If the number of

periods is positive, DATEADD adjusts the date filter forward,

otherwise it lags the current period with the number of

periods specified. Finally, the third argument specifies at

what level to lag.

Given the above example and the current month of April

2013, DATEADD with one year to lag returns April 2012.

Finally, the formula computes the variance as a percentage

by using the DIVIDE function for a safe divide in case the

previous year value is zero.

As you can see, the quick calculations are easy to

understand. And the best part is that you can change the

formulas if needed. The last quick measure type (rolling

average) is an interesting calculation which involves several

date functions. I'll explain how it works and how to change

its behavior in the next section.

17.2 Implementing Rolling Averages

A rolling average measure is typically used to give you a

better idea of values in a series by smoothing ups and

downs. Suppose you need to implement a rolling average

measure over three months (previous, current, and next

month), as shown in Figure 17.1.

Figure 17.1 The "SalesAmount rolling average (c)" measure

computes a rolling average over three months.

The highlighted cell for January 2011 is computed as a

simple average over the previous month (December 2010),

current month (January 2011), and the next month (February

2011). The formula can't just divide the sum by three.

Instead, it must divide by the number of periods with data.

For example, the November 2010 is computed by dividing

the December 2010 value by one since there is data for

December only.

17.2.1 Implementing a Quick Measure

The rolling average is one of the quick measures that Power

BI supports. If you're excited about quick gains and DAX

avoidance, let's take this path to see how far you can get.

Practice

Follow these steps to implement the rolling average as a

quick measure:

1.Right-click FactInternetSales in the Fields pane and click

"New quick measure".

2.In the "Quick measures" window, expand the Calculation

dropdown and select "Rolling average" under the "Time

intelligence" section.

3.Drag FactInternetSales[SalesAmount] to the "Base value"

field. Notice that the default aggregation is Sum, but you can

expand the dropdown and select another standard

aggregation function. You can also drag an existing explicit

measure.

4.Expand the Period dropdown and select Months to compute

the rolling average across months.

5.Leave the "Periods before" and "Periods after" to their

default values of 1.

6.If you have followed my advice from the last lesson to

remove the built-in date tables, attempt to drag

DimDate[Date] to the Date field. Notice that Power BI

complains with the following error "Only Power BI-provided

date hierarchies are supported". Unfortunately, the rolling

average quick measure doesn't work with a custom date

table (a custom date table is a best practice).

7.To complete this exercise, click Cancel. Then turn on the

Auto Date/Time setting in File -> Options and Settings ->

Options (Data Load tab in the Current File section). This will

auto-generate date tables for each date field in the model.

Don't worry that this is not a best practice. I'll show you how

to use a custom date table later.

8.Create a new quick measure and this time, drag

FactInternetSales[OrderDate] to the Date field. Compare your

setup with Figure 17.2. Click OK.

Figure 17.2 The rolling average quick measure requires

Power BI-provided date hierarchies.

Output

Power BI adds a "SalesAmount rolling average" to the Fields

pane.

1.Rename this measure to SalesAmount rolling average (q).

2.Add a Table visual with FactInternetSales[OrderDate] (Year

and Month levels are enough), Fact Internet ‐

Sales[SalesAmount], and FactInternetSales[SalesAmount

rolling average (q)] to the Values area. Compare your results

to Figure 17.1.

Analysis

If you select the "SalesAmount rolling average (q)" measure

in the Fields pane, you'll see this rather complicated formula

in the formula bar:

SalesAmount rolling average (q) =

IF(

ISFILTERED('FactInternetSales'[OrderDate]),

ERROR("Time intelligence quick measures can only be grouped or filtered by the

Power BI-provided date hierarchy or primary date column."),

VAR __LAST_DATE = ENDOFMONTH('FactInternetSales'[OrderDate].[Date])

VAR __DATE_PERIOD =

DATESBETWEEN(

'FactInternetSales'[OrderDate].[Date],

STARTOFMONTH(DATEADD(__LAST_DATE, -1, MONTH)),

ENDOFMONTH(DATEADD(__LAST_DATE, 1, MONTH))

)

RETURN

AVERAGEX(

CALCULATETABLE(

SUMMARIZE(

VALUES('FactInternetSales'),

'FactInternetSales'[OrderDate].[Year],

'FactInternetSales'[OrderDate].[QuarterNo],

'FactInternetSales'[OrderDate].[Quarter],

'FactInternetSales'[OrderDate].[MonthNo],

'FactInternetSales'[OrderDate].[Month]

),

__DATE_PERIOD

),

CALCULATE(

SUM('FactInternetSales'[SalesAmount]),

ALL('FactInternetSales'[OrderDate].[Day])

)

)

)

Let's take a moment to understand it, so you can customize

it later. The formula starts with an IF statement which uses

the ISFILTERED function to ensure that a variation of the

built-in OrderDate hierarchy is on the report. Then, it

declares a variable VAR __LAST_DATE which uses the

ENDOFMONTH to return the last date in the month.

The formula also declares a variable VAR __DATE_PERIOD

to store a table of date periods required for the calculation.

The variable formula uses the DATESBETWEEN function,

which returns a table with one column populated with dates

within a given range. In this case, the range starts at the

beginning of the previous month (STARTOFMONTH returns

the first date in a month). and ends one month after the

current month. The net effect is that VAR __DATE_PERIOD has

all the dates that span the previous, current, and next

month.

The main part of the formula (where RETURN starts) is

somewhat convoluted but we can simplify it later. Starting

with SUMMARIZE, first the formula groups FactInternetSales

by Year, Quarter, and Month levels. Then CALCULATETABLE is

used to filter the grouped table only for the dates in the

__DATE_PERIOD variable. The net result is that SUMMARIZE

will have as many rows as the number of combinations of the

grouped fields. In other words, SUMMARIZE will produce a

table populated with all months that have sales.

Finally, AVERAGEX is used to produce the simple average

over the date table. The simple average will be computed

over the sum of FactInternetSales[SalesAmount]. The

formula uses CALCULATE to remove the filter context from

the Day variation of the built-in OrderDate hierarchy.

17.2.2 Customizing the Quick Measure

In this practice, you'll customize the rolling average formula

to use the custom DimDate table and to simplify it.

Practice

Let's create a new measure so you can test the modified

formula side by side with the query measure. Add a new

measure to FactInternetSales with the following formula:

SalesAmount rolling average (c) =

VAR __LAST_DATE = ENDOFMONTH(DimDate[Date])

VAR __DATE_PERIOD =

DATESBETWEEN(

DimDate[Date],

STARTOFMONTH(DATEADD(__LAST_DATE, -1, MONTH)),

ENDOFMONTH(DATEADD(__LAST_DATE, 1, MONTH))

)

RETURN

AVERAGEX(

CALCULATETABLE(

ADDCOLUMNS(

SUMMARIZE(

DimDate,

DimDate[CalendarYear],

DimDate[EnglishMonthName]

),

"Sales", CALCULATE(SUM('FactInternetSales'[SalesAmount]))

),

__DATE_PERIOD

)

, [Sales]

)

Output

Change your report as follows:

1.Replace the OrderDate variations from the report with

DimDate[CalendarYear] and DimDate[English Month Name].

2.Replace the [SalesAmount rolling average (q)] measure

with [SalesAmount rolling average (c)].

The report should produce the same results. As an optional

step, disable the built-in date hierarchies to make sure that

the formula works without them.

Analysis

This formula reuses the two variables from the quick

measure formula, but it makes the following changes:

1.SUMMARIZE groups only at the year and month levels

because this combination returns all months within a given

year, such as "2010 January", "2010 February", and so on.

Note that if you just group by EnglishMonthName, you'll get

a table with 12 rows that sum sales across all years (if the

year is not on the report), so you need to add the year in the

SUMMARIZE function.

2.The formula uses the ADDCOLUMNS/SUMMARIZE pattern to

project an extended column "Sales". You can also use

GROUPBY. In this case, the ADDCOLUMNS/SUMMARIZE

pattern works great because it returns only rows with data

(remember that the simple average needs to divide by

months with data only).

3.Instead of using CALCULATE, AVERAGEX iterates over the

summarized table and produces a simple average over the

[Sales] extended column.

17.3 Summary

Quick measures are a great way to get you started with DAX

formulas provided by Microsoft. However, they have

limitations and you still need to know DAX to tailor them to

your needs. Now that you know about time intelligence

functions and how they work, let's create custom

calculations that go beyond quick measures for time

intelligence.

Lesson 18

Custom Time Intelligence

As you've seen, Power BI comes with useful quick measures

for basic time intelligence, but the chances are that your

time intelligence requirements will go far beyond these

metrics. This lesson starts by explaining how to overwrite the

date filter context. It walks you through the implementation

of custom time intelligence calculations, such as for

analyzing data by weeks. You'll find the DAX formulas for this

lesson in \Source\Part4\Custom Time Intelligence.dax.

18.1 Understanding Custom Time

Intelligence

Custom time intelligence is based on the following tenants:

 Custom date table – As I explained in the lesson "Working

with Date Tables", a custom date table is a best practice

because you can extend the date table with useful fields,

such as fiscal calendars and weeks. You should mark this

date table as such so that Power BI can validate it and that

time intelligence functions work when they reference this

table.

 Date filter context – Depending on your requirements, you

need to learn how to modify the date filter context. For

example, if you are working on a measure that returns

revenue for the current week, you must filter the date

table accordingly.

18.1.1 Changing Date Context

As you know by now, once you move beyond basic

measures, you need to change the measure filter context in

different ways. Custom time intelligence is no exception. At a

high level, implementing your own time intelligence may

involve two steps. First, try to find a suitable DAX function for

the task at hand. If one exists, then use it because it will

simplify your formula. For example, it will overwrite the date

context for you, so you don't have to ignore it explicitly with

the ALL function. If there is no suitable DAX function, then

create your own date filter context by using whatever date

arithmetic is required. Let's discuss these two steps in more

detail.

Understanding the PREVIOUSDAY function

Suppose you're working on a measure that returns the

revenue for the previous day, such as to calculate a variance

between the current day and previous day. After consulting

with the DAX documentation, you come across the

PREVIOUSDAY function, which looks promising. It has this

syntax:

PREVIOUSDAY (<Dates>)

It takes a single argument, which typically is a reference to a

column of a Date data type (or DateTime). DAX transitions

the filter context and you don't have to ignore it with the ALL

function:

Understanding context transition

Figure 18.1 shows how PREVIOUSDAY changes the filter

context. Suppose the user has selected July 4, 2018 in a

report slicer or filter. This becomes the "as of" or "current"

date that defines the default filter context for all time

calculations on the report.

Figure 18.1 DAX functions, such as PREVIOUSDAY, change

the filter context on the Date dimension.

If you don't use any time intelligence function that

transitions the date filter context, your measures will

evaluate formulas as of the current date. Let's say you have

the following measure:

PreviousDaySales = CALCULATE(SUM(FactResellerSales[SalesAmount]),

PREVIOUSDAY(DimDate[Date]))

When DAX parses PREVIOUSDAY and discovers a reference to

a date column, it replaces the reference with the following

formula:

CALCULATETABLE (DISTINCT (<Dates>))

The CALCULATETABLE function transitions the filter context

on the DimDate table to July 3, 2018 and the measure

returns the revenue as of that date.

18.1.2 Creating Custom Date Context

Although DAX packs many time intelligence functions to

address common requirements, sometimes you won't find an

appropriate function. In this case, you need to filter your

date table (or built-in date hierarchy) explicitly to evaluate

the formula in the appropriate context.

Filtering the date table

You can use the FILTER function to filter the date table but

DATESBETWEEN is specifically designed to work with dates.

It has the following definition:

DATESBETWEEN (<Dates>, <StartDate>, <EndDate>)

The first argument is a reference to a column of a Date data

type, such as DimDate[Date]. The second and third

arguments define the range. If the StartDate is omitted,

DATESBETWEEN defaults to the earliest date in the Dates

column evaluated in the current context (same as

MIN(DimDate [Date]). Similarly, if the EndDate is omitted,

DATESBETWEEN will default to the latest date in the Dates

column evaluated in the current context (same as

MAX(DimDate[Date]).

Using variables

Variables could make the date arithmetic easier to read and

maintain, and the resulting formulas might perform better.

The rolling average measure you implemented in the

previous lesson uses variables to scope the date period.

VAR __LAST_DATE = ENDOFMONTH(DimDate[Date])

VAR __DATE_PERIOD =

DATESBETWEEN(

DimDate[Date],

STARTOFMONTH(DATEADD(__LAST_DATE, -1, MONTH)),

ENDOFMONTH(DATEADD(__LAST_DATE, 1, MONTH))

)

Once you have the filtered date table, you can add it as an

argument to CALCULATE or CALCULATETABLE to modify the

measure filter context.

18.2 Implementing Custom Time

Intelligence

Let's put what you've learned about customizing time

intelligence into practice. Analyzing data by weeks is a

common requirement. However, as you'll quickly discover

there are no DAX functions for working with weeks, except

WEEKDAY (returns a number identifying the day of the week)

and WEEKNUM (returns the week number in the year). In the

first practice, you'll add a column to the DimDate table in the

format "W <weekstartdate>". In the second practice, you'll

implement a rolling variance for comparing the revenue in

the last seven days to the revenue in the seven days prior to

that.

18.2.1 Adding Weeks to Date Tables

Management has requested the ability to analyze data by

weeks. The week name should include the week starting

date. You'll implement this requirement by adding a

calculated column to DimDate.

Practice

Follow these steps to implement the WeekName calculated

column:

1.In the Fields pane (Data View or Report View tab), right-

click DimDate and then click "New column".

2.Enter the following formula in the formula bar for the new

calculated column:

WeekName = "W " & FORMAT((DimDate[Date] - WEEKDAY(DimDate[Date], 2) +

1), "Short Date")

3.To sort weeks in their chronological order as opposed to an

alphanumeric order, add a WeekSort calculated column with

this formula:

WeekSort = DimDate[Date] - WEEKDAY(DimDate[Date], 2) + 1

4.In the Data View tab with DimDate selected, select the

WeekName column. In the Modeling tab, expand the "Sort By

Column" button and select WeekSort.

5.Hide the WeekSort column because it's used just for

sorting.

Figure 18.2 Use the WeekName function to analyze

revenue by weeks.

Output

Add a Matrix visual with DimDate[CalendarYear] in the Rows

area, DimDate[WeekName] in the Columns area, and

FactResellerSales[Amount] in the Values area (see Figure

18.2). The date format in the WeekName column may differ

from the screenshot because it will reflect your local culture.

Analysis

The formula uses the WEEKDAY function to construct the

week name. WEEKDAY returns a number from 1 to 7. The

second argument of WEEKDAY is optional, and it allows you

to specify the week start day. The default value is one, which

means that the week will start on Sunday. The formula

passes two to start the week on Monday. The weekday is

then subtracted from the Date column so that all days within

a week share the same week name. For example, if

DimDate[Date] is July 4, 2019 (Thursday), the formula

subtracts 4 from that date and it gets Jun 30, 2019. Then it

adds one and it gets July 1, 2019, which falls on a Monday.

Then, the formula uses the FORMAT function to format the

date. FORMAT supports different format settings for numbers

and dates. As a best practice, you use the predefined

culture-neutral formats, such as "Short Date", so that Power

BI can format the column using your culture settings.

NOTE The week names may require more complex logic when they span years.

This example carries the previous year into the next. For example, the week

starting December 29, 2008 is named "W 12/29/2008" but you may need to start

every new year with a new week.

18.2.2 Implementing a Rolling Variance

You're tasked to implement a week-over-week (WoW) rolling

variance to calculate the change between count of orders

submitted in the last 7 days to count of orders submitted in

the seven days prior to that. The measure must work as of

any date specified by the interactive user.

Practice

Let's go through a couple of implementation options. Start by

implementing an explicit measure to return the distinct count

of FactInternetSales[SalesOrderNumber] (remember that an

order can have several line items so you can't just count

SalesOrderNumber).

1.Add a measure FactInternetSales[OrderCount] with the

following formula:

OrderCount = DISTINCTCOUNT(FactInternetSales[SalesOrderNumber])

2.To avoid an overly complex formula that defines two

measures and a variance, let's break it up into three

measures. First, implement an OrderCount7 measure to

count orders placed in the last seven days as of the report

date:

OrderCount7 =

VAR EOP = MAX (DimDate[Date])

VAR BOP = MAX (DimDate[Date]) - 6

VAR Period = DATESBETWEEN (DimDate[Date], BOP, EOP)

RETURN

CALCULATE ([OrderCount], Period)

Another way to write this measure would be:

OrderCount7 =

VAR EOP = MAX (DimDate[Date])

VAR BOP = MAX (DimDate[Date]) - 6

RETURN

CALCULATE ([OrderCount],

DimDate[Date] >= BOP,

DimDate[Date] <= EOP)

Output

Add a Table visual with DimDate[Date] and

InternetSales[OrderCount7] fields (see Figure 18.3).

Because the OrderCount7 measure is very performance

intensive, I suggest you limit the report to filtering only a few

days, such as by creating a visual-level filter where Date is

on or after January 1, 2014.

Figure 18.3 The OrderCount7 measure calculates the order

count for the past seven days as of the current date.

Analysis

The first OrderCount7 version uses a Period variable to filter

the DimDate table between the current date and six days

before. This is the implementation approach I discussed at

the beginning of this lesson. The second version uses filters

in CALCULATE. Interestingly, in this model the first version

outperforms the second almost twice!

TIP This is another example of why performance testing is so important. Different

measure versions will perform differently from one model to the next. In this

case, the performance impact is caused by the DISTINCTCOUNT function because

counting distinct values is very resource intensive. We'll see what you can do

about this in Part 5 of this book, but for now remember to try different versions

and optimize your measures relentlessly!

Assuming a report date of January 5, 2014, the alternative

SQL query would be:

SELECT COUNT (DISTINCT SalesOrderNumber)

FROM dbo.FactInternetSales

WHERE OrderDate BETWEEN '12/30/2013' AND '1/5/2014'

Practice

Add another measure (OrderCount14) to calculate the order

count for the previous seven days.

OrderCount14 =

VAR EOP = MAX (DimDate[Date]) - 7

VAR BOP = MAX (DimDate[Date]) - 13

VAR Period = DATESBETWEEN (DimDate[Date], BOP, EOP)

RETURN

CALCULATE ([OrderCount], Period)

Lastly, add another measure "OrderCount WoW" that

calculates the change between the OrderCount7 and

OrderCount14 measures.

OrderCount WoW =

VAR OrderCount7 = [OrderCount7]

VAR OrderCount14 = [OrderCount14]

RETURN

IF (

NOT ISBLANK (OrderCount7) && NOT ISBLANK (OrderCount14),

[OrderCount7] - [OrderCount14]

)

Output

Add the OrderCount14 and OrderCount WoW measures to

the report. Compare your results with

Figure 18.4.

Figure 18.4 The OrderCount WoW measure calculates the

variance between the OrderCount7 and OrderCount14

measures.

Analysis

The only difference between OrderCount14 and OrderCount7

is that OrderCount14 changes the date offset. [OrderCount

WoW] calculates the variance if both measures are not blank.

18.3 Summary

This lesson showed you how to use time intelligence

functions to modify the filter context. When there isn't a

suitable function, such as in the case of WoW calculations,

you can filter your data table (or built-in date hierarchy) and

change the filter context as per your requirements. It's

important to create and test different measure versions to

find which one performs the best.

Lesson 19

Semi-additive Measures

All the measures you've implemented until now aggregate

uniformly across all dimensions, including the Date

dimension. Sometimes, you might encounter semi-additive

measures, such as to handle inventory or account balances.

This lesson explains how additivity affects measures and

shows you how to implement semi-additive measures for

analyzing inventory balances. You'll find the DAX formulas for

this lesson in \Source\Part4\Semi-additive Measures.dax.

19.1 Understanding Measure

Additivity

The most common usage of data analytics is to aggregate

measures across dimensions. When you add an implicit

measure to the report, the measure is aggregated according

to the aggregate function you specify in the Visualizations

pane. The default aggregation is SUM for numeric fields and

Count for text fields. Explicit measures, of course, aggregate

using the formulas you write.

19.1.1 Understanding Additive Measures

The most useful measures are numeric and additive (also

called fully additive in the dimensional modeling

terminology), such as the SalesAmount and OrderCount

measures. Fully-additive measures are also uniform because

they can be aggregated across all dimensions. For example,

you can sum revenue across any dimension and get the

expected total.

Aggregating additive measures

When measures are fully additive, aggregated values can be

derived from previously aggregated results. No matter how

you slice and dice data, the aggregated measures produce

the correct totals without any special intervention. Suppose

you create a visual that shows revenue by month. When

Power BI receives the query, it calls down the storage engine

to get the SalesAmount column aggregated at the month

level.

To do this, the storage engine scans the SalesAmount

column and rolls it up to months. Then, the formula engine

sums the results at a higher grain. For example, if the visual

shows yearly totals, Power BI rolls up the monthly values to

years.

Understanding additive functions

Most DAX aggregate functions are additive. They perform

common aggregation tasks with additive measures. For

example, all standard aggregation functions for implicit

measures are additive, such as Sum, Min, Max, Count, and

Distinct Count. I mentioned before that whenever an "X"

function exists, Power BI maps these functions to their "X"

counterparts. For example, SUM(table[column]) is internally

translated to SUMX(table, SUM(table[column]). So, the

extended functions are also additive.

19.1.2 Understanding Semi-Additive Measures

A semi-additive measure typically aggregates the normal

way across all dimensions except the Date dimension. For

example, although you can sum inventory balances across

product, it's meaningless to do so across time.

Aggregating semi-additive measures

To understand how semi-additive measures aggregate,

consider the following extract from a hypothetical Inventory

fact table (see Table 19.1).

Table 19.1 Semi-additive measures don't aggregate over time.

Product March 1st March

2nd

Total

Product A 10 15 25 (15)

Product B 20 25 45 (25)

Total by

Product

30 40 70 (40)

This fact table stores the closing product quantity at the end

of each day. Aggregating the product quantity over the

Product dimension produces the correct total. However,

summing the product quantity over time is meaningless and

wrong. What is really needed is taking the ending balance as

of the requested date (the numbers in bold). For example,

the product quantity for Product A spanning two subsequent

days, March 1st and March 2nd, should show 15.

Understanding semi-additive functions

To support semi-additive measures, Power BI provides

several functions, including FIRSTDATE, FIRSTNONBLANK,

LASTDATE, LASTNONBLANK, OPENINGBALANCEMONTH,

OPENINGBALANCEQUARTER, OPENINGBALANCEYEAR,

CLOSINGINGBALANCEMONTH, CLOSINGBALANCEQUARTER,

and CLOSINGBALANCEYEAR. As the lesson "Determining

Filter Context" demonstrated, more complex requirements

that cannot be addressed by the semi-additive functions

alone, may require more involved formulas, such as to

produce aggregate-over-aggregate results.

Understanding non-additive measures

Lastly, some measures, such as rates and percentages,

shouldn't be aggregated with standard aggregation functions

at all. For example, the ResellerSales[UnitPriceDiscountPct]

stores the discount percent and cannot be meaningfully

aggregated across any dimension. However, a calculated

column can use this measure to compute the net profit,

which can be aggregated. Or, an extended function, such as

SUMX can perform the arithmetic for each order line item

before the result is rolled up.

19.2 Working with Semi-additive

Measures

As a manufacturing company, Adventure Works maintains an

inventory. You're tasked to model inventory balances and to

produce a measure that returns the product quantity at

hand. This will help the Adventure Works management

analyze and forecast inventory levels.

19.2.1 Understanding the Schema

You won't use the Adventure Works model for this practice.

Instead, I imported the inventory-related tables from the

AdventureWorksDW database in the

\Source\Part4\Inventory.pbix file. Use this file for the

practices in this lesson.

Practice

Let's take a moment to get familiar with the model schema.

1.Open the \Source\Part4\Inventory.pbix file in Power BI

Desktop.

2.Switch to the Model View tab to review the model schema,

which is shown in Figure 19.1.

Figure 19.1 The inventory schema consists of three tables

(one fact table and two dimension tables).

Analysis

In the corporate data warehouse (AdventureWorksDW

database), the inventory subject area is modeled using one

fact table and two dimension tables. Let's explain these

tables in more detail.

 FactProductInventory – This fact tables captures the

inventory movement measures (UnitsIn and UnitsOut) and

the closing quantity measure (UnitsBalance) at the end of

every day. Dimensional modeling refers to this type of fact

table as a periodic snapshot.

 DimProduct and DimDate – You're already familiar with

these two dimensions from the Adventure Works model.

Here, they are used to analyze inventory by date and

product. I've renamed the DimDate[FullDateAlternateKey]

to Date. I've also marked DimDate as a date table and

configured DimDate[EnglishMonthName] to sort by the

DimDate[MonthNumberOfYear] column so that months are

sorted in their chronological order.

19.2.2 Working with Closing Balances

The UnitsIn and UnitsOut measures are additive because

they can be summed up across Product and Date. The

UnitsBalance measure is not and this will become obvious in

a moment.

Practice

Let's create a report to analyze the product closing balances.

1.Add a Matrix visual and bind it to

DimProduct[EnglishProductName] in the Rows area,

CalendarYear, CalendarQuarter, EnglishMonthName, and

Date fields from DimDate in the Columns area, and

FactProductInventory[UnitsBalance] in the Values area.

2.Drill down the 2013 year column to expand it to quarters,

and then drill down the fourth quarter to expand it to

months. Compare your results with Figure 19.2.

Figure 19.2 The UnitsBalance measure sums up across any

field from DimDate and this is incorrect.

Analysis

While the report sums UnitsBalance over products (as it

should), it also sums balances across time and this is

incorrect. For example, the fourth quarter ending balance for

the first product (Adjustable Race) should be 27,125 (its

December balance) and not 80,500 (the sum of the three

months).

Practice

Let's fix the closing balances issue by creating a new

measure.

1.Add a UnitsAtHand measure to the FactProductInventory

table with the following formula:

UnitsAtHand = CALCULATE(SUM(FactProductInventory[UnitsBalance]),

LASTDATE(DimDate[Date]))

2.Replace the UnitsBalance field in the Matrix visual with

UnitsAtHand.

Output

The report now produces the expected results, as shown in

Figure 19.3. Please feel free to explore the data in different

ways, such as to use ProductLine (instead of

EnglishProductName) to aggregate products up.

Analysis

No matter how you slice the data, UnitsAtHand produces the

expected results. The formula uses the CALCULATE function

to overwrite the filter context by passing the LASTDATE

function as the second argument. As its name suggests,

LASTDATE returns the last date in the current context of the

specified column. For December 2013, the last date is

December 31, 2013. The measure gets the quantity from this

date and it applies it to the dimension totals. This is exactly

what you need to implement closing balances.

Figure 19.3 The UnitsAtHand measure produces the

expected results by showing the last balance in the period.

Practice

If every product has its quantity recorded every day then

you're done. Real life is not perfect though and it's possible

that there will be days with no recorded quantities. Or, you

may not want to wait for the current month to be over to

show its balances. What should the measure return then?

Should it return the quantity for the last non-blank date? Or,

should it return an empty value, such as in the case when

the product is discontinued and destroyed? If you use

LASTDATE, you'll get the latter outcome.

1.Since Adventure Works has exemplary data quality and it

has data for every month and product, I added a calculated

column UnitsBalanceOverwrite to FactProductInventory to

simulate a missing quantity value. The measure formula

follows:

UnitsBalanceOverwrite = IF(FactProductInventory[ProductKey]=1 &&

FactProductInventory[DateKey] = 20131231,

BLANK(), FactProductInventory[UnitsBalance])

This formula sets a blank value for the Adjustable Race

product and December 31, 2013. You can achieve the same

effect if you remove the entire row in Power Query and

reload the table.

2.Change the formula of the UnitsAtHand measure to use the

UnitsBalanceOverwrite column. Notice that the Matrix visual

now shows a blank value in the quarter and year totals for

Adjustable Race.

Figure 19.4 LASTDATE will return an empty balance if there

is balance for the closing period.

If data is not available on the last date, the measure returns

a blank value. Assuming you want the totals to show the last

non-blank balance instead, change the UnitsAtHand formula

as follows:

UnitsAtHand =

CALCULATE (

SUM (FactProductInventory[UnitsBalanceOverwrite]),

LASTNONBLANK (

DimDate[Date],

CALCULATE (SUM (FactProductInventory[UnitsBalanceOverwrite]))

)

)

Output

The Adjustable Race totals should now show 875. This is the

November 30th balance, which happens to be the last non-

blank date.

Analysis

The LASTNONBLANK function goes back in time to find the

last date where the expression passed a second argument

has a non-blank value. This function is an iterator and you

must use the CALCULATE function to transition the row

context to a filter context. Because it iterates back in time,

LASTNONBLANK could be slow with many products and

dates.

In the case of missing end dates, such as when you have

incomplete months, you might get much better performance

if you use this formula:

UnitsAtHand (a) =

VAR LASTNONBLANKDATE = CALCULATE (MAX (DimDate[Date]), ALL (

DimProduct))

RETURN

CALCULATE (

SUM (FactProductInventory[UnitsBalanceOverwrite]),

DimDate[Date] = LASTNONBLANKDATE

)

The new version uses a LASTNONBLANKDATE variable to

store the last date with data across all products. Then, it

calculates the closing balance as of that date. However, this

measure won't work (it will return blank values) for products

with missing quantities. It also won't work if the balance

dates differ across products, such as when the quantity of

some products is recorded on December 15 and for others

it's recorded on December 16.

19.3 Summary

You'll encounter semi-additive measures when you must

calculate closing balances (both finance and inventory), and

when you need to return the last recorded value, such as

when you work with exchange rates. DAX has functions to

calculate the values at the period start and end dates. This

lesson showed you how the semi-additive functions work and

how to use them to calculate closing balances.

Lesson 20

Centralizing Time Intelligence

Your model could include many time intelligence measures

and maintaining all these formulas might become a

maintenance liability. Calculation groups can help you

centralize time intelligence formulas in one place and this

lesson shows you how. As of the time of writing, Power BI

Desktop doesn't yet support calculation groups (I'll use

Analysis Services Tabular), so you might not be able to

practice this feature right away. You'll find the DAX formulas

for this lesson in \Source\Part4\Calculation Groups.dax.

20.1 Understanding Calculation

Groups

To understand calculations groups, you need to understand

what problem they solve. It's not uncommon for Power BI

models to have many measures. It's also not uncommon for

a measure to have various time intelligence variants. For

example, SalesAmount might have several time intelligence

measures, such as SalesAmount YTD, SalesAmount QTD,

SalesAmount YTD, SalesAmount YoY, SalesAmount YoY%, and

so on.

If you multiply the number of time intelligence variants by

the number of other measures that need the same formulas,

you might end up with hundreds of measures. This is a

measure explosion! Typing and maintaining all these

formulas one by one in the rudimentary Power BI Desktop

formula editor could be very time consuming and there is

always the risk of "forgetting" to apply changes and bug

fixes. Calculation groups help you overcome this issue.

20.1.1 What is a Calculation Group?

Like field groups (see the "Grouping and Binning" lesson),

which consolidate column values, a calculation group

consolidates measure formulas so that they can be

maintained in one place.

How calculation groups are presented

Power BI presents calculation groups as a single table in the

Fields pane. This table has a single column. The users can

add this column to a report filter or slicer and select which

time intelligence feature they need. Consider the Matrix

report shown in Figure 20.1. Suppose you have

implemented calculation groups as a table called "Time

Intelligence" and the column is called "Time Measure".

In this case, the user has added a slicer bound to the Time

Measure column, which has formulas for the current value of

the measure, mount-to-date (MTD), quarter-to-date (QTD),

and YTD (year-to-day) time intelligence variants. The visual

is bound to the Reseller Total Sales measure in the Values

area, Time Measure in the Columns area, and Calendar Year

and Month Name in the Rows area. The user has selected

QTD and YTD values in the slicer. The report shows QTD and

YTD values. The user can add more measures to the report

and get time intelligence for all the measures on the report.

The model doesn't need a separate formula for each time

intelligence variation and each measure.

Figure 20.1 The user can select specific time intelligence

measures on the report.

When to use calculation groups?

Consider calculation groups in the following scenarios:

 Centralizing time intelligence – This is the most important

reason to use calculation groups. You can define all time

intelligence formulas in calculation groups so if you need

to make changes, you can do it in one place.

 Reducing number of time intelligence measures –

Calculation groups can help you avoid creating separate

time intelligence measures if the users are willing to forgo

some flexibility. For example, they must filter the

measures they need, and they can't insert another

measure in between the time intelligence columns (time

intelligence variations are kept together on the visual).

REAL LIFE Calculation groups alone may lead to more rigid report layouts that

end users might not tolerate well. Analysis Services Multidimensional has a

similar feature that allows models to implement "shell" time dimensions that

work in the same way. However, most real-life models might still require exposing

time intelligence calculations as separate measures for maximum flexibility. So,

calculation groups might not help you reduce the number of measures, but they

can help centralizing the formulas.

Understanding limitations

As of the time of writing, calculation groups have certain

limitations specific to Power BI. They don't support Power BI

implicit measures, so you must use only explicit measures

(another good reason to have explicit measures even for

standard aggregations). Continuing the list of limitations, the

MDX query interface doesn't support them so they won't

work in Excel or other MDX clients. Row level security (RLS)

is not supported. Lastly, dynamic format strings (produced

by measures) are not supported but are on the short-term

roadmap.

20.1.2 Implementing Calculation Groups

Once you have your time-intelligence formulas,

implementing calculation groups is easy thanks to several

DAX functions that Microsoft added specifically for

calculation groups.

Understanding calculation group functions

Table 20.1 shows the DAX functions for calculation groups.

Table 20.1 DAX has three functions that are specifically designed for

calculation groups.

Function Description

SELECTEDMEASURE Returns a reference to the measure that is in the current context of

the calculation group.

SELECTEDMEASURENAME Returns the name of the measure that is in the current context of the

calculation group.

ISSELECTEDMEASURE(M1,

M2,..Mn)

Returns TRUE if one of the specified measures is in the current context of

the calculation group.

Understanding calculation group precedence

You can have more than one calculation group and a

calculation group doesn't have to handle only time

intelligence. This opens interesting scenarios for reusing

programming logic. For example, you may have a calculation

group with different formulas for computing averages, as

shown in Table 20.2.

Table 20.2 A sample calculation group for calculating averages.

Calculation Item Formula

Current SELECTEDMEASURE

Simple Average DIVIDE(SELECTEDMEASURE(), COUNTROWS(DimDate))

3-mo Average CALCULATE (AVERAGEX (VALUES(DimDate[EnglishMonthName]), [Sales]),

DATESINPERIOD (DimDate[Date], MAX (DimDate[Date]), -3, MONTH))

Then, you might have another calculation group for time

intelligence, and you want the time intelligence functions to

apply also to the averages. This requires the time

intelligence calculation group to have a higher evaluation

order than the averages calculation group. Each calculation

group has a Precedence property to let you specify the

execution order. For example, you can leave the precedence

of the averages group to its default value of zero and

increase the precedence of the other group to 10.

Understanding implementation steps

Here are the high-level steps for implementing calculation

groups:

1.Create DAX formulas for each type of time intelligence you

plan to support, such as YTD, QTD, and so on.

2.Add a special Calculation Group table to the model, such as

Time Intelligence.

3.Rename the single calculation group attribute to whatever

column name you want your users to see, such as Time

Measure.

4.Create a calculated item for each time intelligence type

and enter the appropriate formula.

20.2 Working with Calculation Groups

As I mentioned, the Power BI Tabular backend-service

supports calculation groups, but Power BI Desktop currently

has no user interface for you to configure them. Nor does the

SQL Server Data Tools (SSDT) tool. Microsoft is currently

working on providing write access to the XMLA endpoint of

the Tabular backend service. Once this is in place, you'll have

at least two options to implement calculation groups:

 Use Tabular Editor to make and publish the changes to

Power BI.

 Script the Power BI published dataset in SQL Server

Management Studio (SSMS) and apply the necessary

changes.

20.2.1 Creating Calculation Groups

I'll use the first approach for this practice, and I'll use the

excellent community tool Tabular Editor

(https://tabulareditor.github.io), which I typically use to

design Analysis Services Tabular models. Calculation groups

are supported in SQL Server 2019 and I used a community

technology preview (CTP) build. Since the Power BI XMLA

endpoint is not currently write-enabled, I deployed the

changes to an Analysis Services Tabular model. Again, you

won't be able to do this practice in Power BI Desktop, but it

will help you understand how this important feature works so

you can use it once it's enabled in Power BI.

Practice

Let's follow the above steps to create a calculation group in

Tabular Editor.

1.I'll use the following formulas for MTD, QTD, and YTD

calculations, which you're already familiar with:

TOTALMTD(SELECTEDMEASURE(), 'Date'[Date])

TOTALQTD(SELECTEDMEASURE(), 'Date'[Date])

TOTALYTD(SELECTEDMEASURE(), 'Date'[Date])

https://tabulareditor.github.io/

Figure 20.2 Tabular Editor supports calculation groups.

2.Open Tabular Editor and then open the Analysis Services

Tabular *.bim file (unlike Power BI Desktop, Tabular saves the

model metadata into a *.bim file). Right-click the Tables node

and click Create New -> Calculation Group (see Figure

20.2). This will add a new special table called New

Calculation Group to the list of tables. Rename the table to

Time Intelligence.

NOTE While you are in the table properties, notice that a calculation group has a

numeric Precedence property with the default value of zero. As I explained

before, you can increase it to a higher value when you have multiple and intra-

dependent calculation groups.

3.Rename the single attribute of the Time Intelligence table

to Time Measure.

4.Right-click the Time Intelligence table and click New

Calculation Item for each of the calculation items you need.

Enter the DAX formula for each calculation item, as shown in

Table 20.3.

Table 20.3 A sample calculation group for calculating averages.

Calculation

Item

Formula DescriptionCalculation

Item

Formula Description

Current SELECTEDMEASURE() No time intelligence, just return the

current measure value

MTD TOTALMTD(SELECTEDMEASURE(),

'Date'[Date])

Calculates month-to-date

QTD TOTALQTD(SELECTEDMEASURE(),

'Date'[Date])

Calculates quarter-to-date

YTD TOTALYTD(SELECTEDMEASURE(),

'Date'[Date])

Calculates year-to-date

Analysis

At the end of this practice the Time Intelligence calculation

group should look like Figure 20.3.

Figure 20.3 The Time Intelligence calculation group has four

calculation items.

1.Save and deploy your changes. This is where you need the

write connectivity to Power BI so you can apply the changes

directly to the published dataset while waiting for Power BI

Desktop to catch up and provide user interface.

2.(Optional) To support more flexible report layouts, consider

creating separate measures that use the Time Intelligence

calculation group to "flatten" measures, such as:

[Sales YTD] = CALCULATE ([Sales]), 'Time Intelligence'[Time Measure] = "YTD")

[Sales QTD] = CALCULATE ([Sales]), 'Time Intelligence'[Time Measure] = "QTD")

20.2.2 Using Calculation Groups

As I explained before, calculation groups don't work with

implicit measures. Therefore, your Power BI visual must use

explicit measures.

Practice

Let's test the changes in Power BI Desktop by creating a

report that looks like the one shown in

Figure 20.1.

1.Add a Matrix visual and bind it to the Reseller Total Sales

measure in the Values area, 'Time Intelligence'[Time

Measure] in the Columns area, and Calendar Year and Month

Name in the Rows area.

2.Add a slicer and bind it to the 'Time Intelligence'[Time

Measure] field.

3.Select all the calculated items. Then select only a few

calculated items.

4.(Optional) Add another measure to the report.

Analysis

Notice that the report creates a time intelligence column for

each calculated item. Calculated groups are very handy but

not so flexible when it comes to report layouts. For example,

you can't reorder the columns, such as to place the Current

variation at the end of the list. You also can't add measures

to the report that are outside the time intelligence section.

Although the calculated item formula can check for

specific measures using SELECTEDMEASURENAME and set

them to empty values, the measure will still be repeated for

each calculated item in the report. Therefore, I recommend

creating separate measures that piggyback on the

calculation group variations.

20.3 Summary

Calculation groups are convenient for centralizing

management of common DAX formulas. Although not

specific to just time intelligence, calculation groups are

especially useful to centralize time intelligence calculations

because they tend to cause many measures. If users are OK

with less flexible report layouts, then you can also avoid

having a separate measure per each field that requires time

intelligence formulas. Otherwise, create measures that

"flatten" the calculation group.

PA RT 5

Queries

Besides calculated columns and measures, you can use DAX

to query Power BI and Tabular models. In fact, when you

interact with a report, Power BI generates DAX queries and

sends them to the backend Analysis Services Tabular service.

You can create your own DAX queries. This brings several

benefits, such as testing measures outside Power BI Desktop,

exploring the model data, and implementing reports with

other tools that require you to specify a dataset query, such

as Power BI Report Builder.

This part of the book introduces you to DAX queries. You'll

learn how to create and test measures and variables, and

how to identify and address performance bottlenecks. You'll

also implemented a paginated report with Power BI Report

Builder. You'll find the completed exercises for this part of the

source code included in the \Source\Part5 folder.

Lesson 21

Introducing DAX Queries

Analysis Services Tabular, which is the backend service that

hosts your local and published Power BI models, provides

two external query interfaces: Multidimensional Expressions

(MDX) and Data Analysis Expressions (DAX). MDX clients,

such as Microsoft Excel, can query the model with MDX,

while DAX-aware clients can send DAX queries. Since DAX is

the native expression language of Power BI and Tabular, the

DAX interface is usually more efficient, so use DAX instead of

MDX.

This chapter introduces you to DAX queries. You'll learn

how to create basic DAX queries and how to test them. I'll

also show you how to auto-generate DAX queries in SQL

Server Management Studio (SSMS). You'll find the DAX

formulas for this lesson in \Source\Part5\Introducing DAX

Queries.dax.

21.1 Understanding DAX Queries

When you interact with reports, Power BI generates DAX

queries for you, but you never see them. Behind the scenes,

there is a query behind every visual on the report. Each time

you make data changes to the visual, such as adding or

removing fields, filtering, or sorting, Power BI generates and

runs a new DAX query. You can create your own DAX queries

to:

 Create and test measures – Let's face it. The formula

editor in Power BI Desktop is improving but it could be

tedious. Once you get more proficient with DAX, you might

prefer to test your measures outside Power BI Desktop.

 Profile measure performance – DAX Studio includes

features for evaluating the measure performance, such as

to check if the measure is storage engine-bound.

 Create paginated reports – Some reporting tools, such as

Power BI Report Builder, requires you to specify a query for

every dataset. When connecting to Power BI and Tabular

models, it makes sense to use DAX, as it's the native

Power BI language.

To create your custom queries, you need to understand the

query syntax first.

21.1.1 Understanding Query Syntax

Power BI supports a DAX query syntax centered on the

EVALUATE clause.

[DEFINE { MEASURE <tableName>[<name>] = <expression> }

{ VAR <name> = <expression>}]

EVALUATE <table>

[ORDER BY {<expression> [{ASC | DESC}]}[, …]

[START AT {<value>|<parameter>} [, …]]]

Don't worry if the query syntax looks intimidating because

many of the clauses are optional (that's why they are

surrounded with square brackets). Just like measures and

calculated columns, the query syntax is not case-sensitive,

and you can use upper or lower case, such as EVALUATE or

evaluate. Let's explain this syntax one step at a time.

Understanding the DEFINE clause

The DEFINE clause is an optional clause that allows you to

define query-scoped measures or variables using DAX

formulas. Similar to explicit measures, you can specify a

query-scoped measure by using the

TableName[MeasureName] syntax and by entering an

expression that returns a single scalar value. A query-scoped

measure can reference other query-scoped measures

defined before or after that measure.

NOTE A DAX query can define query-scoped measures and variables only. You

can't define calculated columns. Calculated columns must be created in Power BI

Desktop at design time.

Understanding the EVALUATE clause

The EVALUATE clause is the only mandatory clause. A query

can have only one EVALUATE clause. Think of EVALUATE as

the SELECT statement in the SQL language. EVALUATE must

be followed by a single table or an expression that produces

a table. The expression can reference query-scoped

measures or table variables that were previously introduced

with the DEFINE clause.

Understanding ORDER BY and START AT clauses

An optional ORDER BY clause can be added to sort the

results. The optional START AT clause provides a mechanism

to request the results at a spot in the ordered set. The

ORDER BY and START AT clauses are closely related, and you

can't use START AT without using ORDER BY. Each item

following the START AT clause maps to one of the ORDER BY

expressions. The query might specify either a starting value

or the name of a parameter that will contain the starting

value, such as @Month.

21.1.2 Choosing a Query Tool

Microsoft has extended SQL Server Management Studio

(SSMS) with DAX query capabilities. There is also DAX Studio

- a community tool designed to help you test DAX queries.

Table 21.1 compares the two tools side by side based on

their support for DAX queries.

Table 21.1 This table compares SSMS and DAX Studio for working with

DAX queries.

Feature SSMS DAX Studio

Installation Standalone desktop app Standalone desktop app, Excel

add-in

Syntax coloring Yes Yes

Intellisense Yes Yes

Auto-generating DAX No Yes

Defining and expanding measures No Yes

Profiling performance No Yes

Tracing queries No (need to use SQL Profiler) Yes

Integrated function reference No Yes

Integrated Data Management Views

(DMVs)

No Yes

Using SSMS

SSMS is the Microsoft premium tool for all tasks related to

SQL Server (not just DAX). SSMS has two features that are

specifically designed to help you work with DAX queries:

 DAX Query Editor – Once you connect to a Power BI or

Tabular model, right-click the database and click New

Query -> DAX. To connect to a Power BI Desktop model, in

Object Explorer connect to Analysis Services using the

localhost:port connection string (you can obtain the port

from DAX Studio as the lesson "Understanding storage"

demonstrated). This opens a new query editor, where you

can type and execute your DAX query.

 DAX Query Designer – Right-click the database but instead

of New Query, click Browse. This opens the same DAX

Query Designer that is available in Power BI Report

Builder. It can auto-generate DAX queries as you drag and

drop fields. I'll demonstrate this feature in the "Using

Power BI Report Builder" lesson.

Using DAX Studio

DAX Studio is a free community tool, created and maintained

by the community, including prominent Microsoft Most

Valuable Professionals (MVPs). It's specifically designed for

working with DAX and it has features that SSMS doesn't

have, such as analyzing the query performance and

formatting DAX code. Because of this, I recommend you use

DAX Studio.

21.2 Working with Basic Queries

In this practice, I'll introduce you to DAX Studio IDE and how

you can use it for testing custom DAX code. Then, you'll

execute a few sample DAX queries.

21.2.1 Getting Started with DAX Studio

You can download and install the latest version of DAX Studio

from https://daxstudio.org/. By default, the tool saves query

files with a *.dax file extension, which are just text files that

you can open with any text editor.

Practice

Let's open an existing *.dax file in DAX Studio and get

familiar with its environment.

1.Open Power BI Desktop and load the Adventure Works file

that you worked on in Part 4 of this book or use the one

included in the \Source\Part5 folder.

2.Open DAX Studio and click Cancel in the connection

window.

3.Click File -> Open, and then open the

Source\Part5\Introducing DAX Queries.dax file.

4.When prompted to connect, choose the "PBI / SSDT" option

and connect to the Adventure Works model.

Once DAX Studio connects, it displays the model metadata in

the left Metadata pane (see Figure 21.1). The Metadata

pane has three tabs. The Metadata tab fulfills a similar role

as the Fields pane in Power BI Desktop, but it also shows

hidden objects, such as the Power BI auto-generated date

tables. The Functions tab lists the DAX functions organized

by categories. You can drag a function and drop it in the

query to see its syntax.

https://daxstudio.org/

Figure 21.1 DAX Studio is specifically designed for working

with DAX queries.

Output

The DMV tab lists dynamic management views (DMVs).

Analysis Services provides dynamic management views

(DMVs) to help administrators monitor the health of a server

instance, to diagnose problems, and to tune performance.

You can use SQL-like SELECT statements to query these

views just like you can query a SQL Server relational table.

The views are documented at

https://docs.microsoft.com/sql/analysis-

services/instances/use-dynamic-management-views-dmvs-

to-monitor-analysis-services.

TIP Looking for a quick way to get a list of all measures, their formulas, and other

metadata, such as display folders? Just drag the MDSCHEMA_MEASURES DMV and

drop it in the query. Then, run the resulting SELECT statement.

The right pane is where your DAX queries go. You can have

multiple files open and you can have multiple queries in a

file. If you press the Run button in the ribbon, DAX Studio

runs all the queries in the file loaded in the active tab. Or,

you can select a query and click Run (or F5) to run just this

query. There are three tabs in the bottom of the query pane:

 Output – Gives you high-level execution statistics, such as

the count of rows in the query results and the query

execution time. This tab also shows the error text if a

formula generates an error or the query syntax is

incorrect.

 Results – By default, the query results are shown in a grid

in the Results tab. But you can use the Output ribbon

button to save the results in a tab-delimited text file if you

prefer.

 Query History – Lists previously run queries. You can

double-click a query to load it in the query pane.

Many other features are available in the ribbon, such as

formatting queries, commenting, and analyzing the query

performance.

Analysis

DAX Studio can connect to models hosted in Analysis

Services Tabular or Power BI Desktop. You must have your

file open in Power BI Desktop in order for DAX Studio to

connect to its backend Analysis Services Tabular instance

when querying Power BI Desktop models.

https://docs.microsoft.com/sql/analysis-services/instances/use-dynamic-management-views-dmvs-to-monitor-analysis-services

21.2.2 Running DAX Queries

Next, you'll execute a few basic DAX queries in DAX Studio to

get familiar with both the tool and the query syntax.

Practice

You'll start with a barebone DAX query and enhance it. Select

the following query and click F5 to run it.

EVALUATE FactResellerSales

Output

The query will run for a few seconds due to the large number

of rows. Once it's done, the Results tab shows all rows and

columns from the FactResellerSales table.

Analysis

EVALUATE <table> is equivalent to SELECT * FROM <table>

in SQL.

Practice

The EVALUATE clause can use any function that returns a

table, such as the FILTER function. The following query

returns the rows with SalesAmount exceeding 20,000:

EVALUATE FILTER(FactResellerSales, [SalesAmount] > 20000)

The following query adds the ORDER BY clause to sort the

results by OrderDateKey in an ascending order, followed by

SalesAmount in a descending order:

EVALUATE FILTER(FactResellerSales, [SalesAmount]>20000)

ORDER BY [OrderDateKey], [SalesAmount] DESC

The following query uses the START AT clause to limit the

results to start at January 1st, 2013 just like a SQL query can

use a WHERE clause to filter the output:

EVALUATE FILTER(FactResellerSales, [SalesAmount]>20000)

ORDER BY [OrderDateKey], [SalesAmount] DESC

START AT 20130101

The following query returns the same results without using

the START AT clause.

EVALUATE FILTER(FactResellerSales, [SalesAmount]>20000 && [OrderDateKey]

>= 20130101)

ORDER BY [OrderDateKey], [SalesAmount] DESC

21.3 Summary

You use the EVALUATE statement with optional clauses to

define a custom DAX query. Both SSMS and DAX Studio can

execute DAX queries, but I recommend you use DAX Studio

because it has more features and it's specifically designed

for working with DAX.

Lesson 22

Creating and Testing Measures

As you become more proficient with DAX, you might find the

Power BI Desktop formula editor is somewhat tedious. One of

the main benefits of custom DAX queries is to create and

test measures outside of the Power BI Desktop. This way you

can quickly make changes and ensure that the measure

returns the expected results.

This lesson teaches you how to work with measures and

variables in custom queries. It shows you how to create

queries to test measures. You'll find the DAX queries in the

\Source\Part5\Creating and Testing Measures.dax file.

22.1 Getting Started with Query

Measures

You already know how measures work and you've created

various explicit measures in the previous lessons. You just

need to learn a few more things to transition your knowledge

to custom queries. In Power BI Desktop, you test measures

by creating reports, which in turn auto-generate and execute

DAX queries. In DAX Studio, you're responsible for creating

the query, so let's start there.

Figure 22.1 You can use a similar report to generate a test

query.

22.1.1 Capturing Test Queries

Unfortunately, DAX Studio doesn't provide a query template,

so you need to fill in this gap by creating a query to test your

measure(s). In the first lesson "Introducing DAX", I showed

you how to capture queries using the Performance Analyzer

feature in Power BI Desktop. DAX Studio has a similar

feature. Let's try it to capture a query generated by Power BI

Desktop so you can use it as a query template for testing.

Practice

In this practice, you'll capture and examine a DAX query

from Power BI Desktop.

1.Open the \Source\Part5\Adventure Works.pbix file in Power

BI Desktop.

2.In Report View, select the "Creating and Testing Measures"

tab to view the report shown in

Figure 22.1. This report has a Matrix visual and two slicers.

3.Open DAX Studio. Choose the "PBI/SSDT Model"

connectivity option and select the Adventure Works model. If

you don't see it in the dropdown list, make sure that Power BI

Desktop is open with the Adventure Works model loaded.

Click Connect.

4.In the DAX Studio ribbon, click the "All Queries" button to

capture queries sent from Power BI Desktop to the backend

Analysis Services Tabular instance. This adds another tab "All

Queries" to the query pane.

5.In Power BI Desktop, change a slicer. For example, drag the

CalendarYear slicer to expand or narrow the filter selection.

This will cause Power BI to generate and execute a DAX

query.

6.In DAX Studio, click the "All Queries" tab to select it. You

should see two queries (one resulting from the slicer change

and another that provides data to the visual).

7.Usually, the visual query has a longer duration. Double-

click that query to load it in the query pane.

Output

The query behind the Matrix visual should look like this:

DEFINE

VAR __DS0FilterTable = FILTER(KEEPFILTERS(VALUES('DimDate'[CalendarYear])),

'DimDate'[CalendarYear] >= 2011)

VAR __DS0FilterTable2 = TREATAS({"United States"},

'DimSalesTerritory'[SalesTerritoryCountry])

EVALUATE

TOPN(502,

SUMMARIZECOLUMNS(

ROLLUPADDISSUBTOTAL(

ROLLUPGROUP('DimDate'[CalendarYear], 'DimDate'[EnglishMonthName],

'DimDate'[MonthNumberOfYear]), "IsGrandTotalRowTotal"),

__DS0FilterTable,

__DS0FilterTable2,

"SumSalesAmount", CALCULATE(SUM('FactResellerSales'[SalesAmount])),

"SalesAmount__qm__YTD", 'FactResellerSales'[SalesAmount (qm) YTD]

),

[IsGrandTotalRowTotal], 0,

'DimDate'[CalendarYear], 1,

'DimDate'[MonthNumberOfYear], 1,

'DimDate'[EnglishMonthName], 1

)

ORDER BY

[IsGrandTotalRowTotal] DESC,

'DimDate'[CalendarYear],

'DimDate'[MonthNumberOfYear]

Analysis

The query uses the DEFINE clause to declare two table

variables that correspond to the two slicers. Although the

second variable uses a different syntax (TREATAS), the exact

syntax doesn't matter. What matters is that these variables

apply filters (think of the WHERE clause in a SQL SELECT

statement) that return a subset of the data for testing. To

make things simple, forget about TREATAS and use just the

FILTER function.

NOTE Although not required for a simple filter, the KEEPFILTERS function

preserves any previous filters so that both the new and previous filters are

applied. Suppose you want to filter the table T on the column C. The following

expression returns rows from T where [C] = 1 or [C] = 2. Although there is filter

T[C]=3, only the latest (innermost) filter takes effect:

CALCULATETABLE(CALCULATETABLE (T, T[C]=1 || T[C]=2), T[C]=2 || T[C]=3)

Whereas, the next formula returns rows from T where [C]=2. In other words,

KEEPFILTERS returns the intersection of both filters:

CALCULATETABLE(CALCULATETABLE(T, KEEPFILTERS(T[C]=1 || T[C]=2)), T[C]=2 ||

T[C]=3)

Next, EVALUATE marks the start of the main query. EVALUATE

needs to be followed by a table expression. Power BI uses

the TOPN function to return data in chunks of 502 rows at a

time. As you scroll down the visual, Power BI fetches more

rows as needed. Nested in TOPN is SUMMARIZECOLUMNS

that returns the data grouped by the fields in the data visual:

CalendarYear, EnglishMonthName, and MonthNumberOfYear.

SUMMARIZECOLUMNS accepts additional constructs, such

as ROLLUPGROUP, to generate totals. It also projects the two

measures added to the Values area of the visual:

SumSalesAmount (an implicit measure so Power BI generates

its aggregation formula), and Sales_Amount_qum__YTD (an

existing measure). Notice that the table variables are passed

as filter arguments to SUMMARIZECOLUMNS to evaluate the

measures only for a subset of data. Lastly, the query orders

the results using the ORDER BY clause.

22.1.2 Creating a Test Query Template

Although you can run the query as it is, it might make be

preferable to simplify it and save it so that you can reuse it

as a template for testing measures in DAX.

Practice

Here is the simplified version:

DEFINE

VAR __DS0FilterTable = FILTER (KEEPFILTERS (VALUES (

'DimDate'[CalendarYear])),

'DimDate'[CalendarYear] >= 2011)

VAR __DS0FilterTable2 = TREATAS ({ "United States" },

'DimSalesTerritory'[SalesTerritoryCountry])

EVALUATE

SUMMARIZECOLUMNS (

'DimDate'[CalendarYear],

'DimDate'[EnglishMonthName]

__DS0FilterTable,

__DS0FilterTable2,

"SumSalesAmount", CALCULATE (SUM ('FactResellerSales'[SalesAmount])),

"SalesAmount__qm__YTD", 'FactResellerSales'[SalesAmount (qm) YTD])

TIP To format your query nicely so you can read it better, select all the text of the

query and click the Format Query button in the ribbon. You can also use this

feature to ensure that the query is syntactically correct because the formatter

validates the query and it will show errors in the Output tab in case of syntax

errors.

Output

Select all the text of the simplified query and run it. Compare

your results with Figure 22.2.

Figure 22.2 The results generated by the simplified query.

Analysis

This query removes the total rollup, the MonthNumberOfYear

column (not needed unless you want to sort the results by

it), and the ORDER BY clause. To recap, the important steps

for creating a query to test measures are:

1.Define the appropriate filters as table variables depending

on how you want to filter the data.

2.Use SUMMARIZECOLUMNS to group by the appropriate

fields.

3.Pass the table variables as filter arguments to

SUMMARIZECOLUMNS.

4.Project the measures you want to test as extended columns

in SUMMARIZECOLUMNS.

Now you have a generic query that you can reuse to create

and test your measures!

22.2 Working with Measures

You can add your explicit measures in the DEFINE portion of

the query. You can also retrieve the definition of existing

measures in the model so that you can work on or reuse

their formulas. The following practices demonstrate both

approaches.

22.2.1 Retrieving Measure Formulas

Suppose you want to make changes to an existing measure

formula. You'll use DAX Studio to go through several

iterations. You might find this approach more convenient

than using the Power BI Desktop formula bar and waiting for

the report to refresh every time you make a change.

Practice

DAX Studio can retrieve the formula for existing measures.

1.In DAX Studio, click the magnifying glass in the metadata

pane and type YTD. DAX Studio searches the model

metadata and shows all fields whose name contains "YTD".

2.Right-click the SalesAmount (qm) YTD measure and click

Define Measure.

Output

DAX obtains the measure formula and immediately adds it

below the DEFINE clause in the first query in the active query

pane.

DEFINE

---- MODEL MEASURES BEGIN ----

MEASURE FactResellerSales[SalesAmount (qm) YTD] = IF(

ISFILTERED('DimDate'[Date]),

ERROR("Time intelligence quick measures can only be"),

TOTALYTD(SUM('FactResellerSales'[SalesAmount]), 'DimDate'[Date])

)

---- MODEL MEASURES END ----

Analysis

Recall that all measures defined in a query are scoped to

that query only. Therefore, a query-scoped measure

overshadows a measure with the same name in the model.

This is great because you can change and finetune the

measure formula in DAX Studio. Once you're satisfied with

the changes, you can copy the formula (after the equal sign)

and paste it in Power BI Desktop to apply the changes to the

model.

22.2.2 Creating Custom Measures and Variables

Now that you know how DAX queries work, you're ready to

create and test your own measures in DAX Studio.

Practice

The following query defines a PendingOrderCount measure

that returns the count of open orders for the first five days in

January 2013.

DEFINE

MEASURE FactInternetSales[PendingOrdersCount] =

VAR EOP = MAX (DimDate[Date])

RETURN

CALCULATE (

DISTINCTCOUNT (FactInternetSales[SalesOrderNumber]),

FactInternetSales[ShipDate] >= EOP,

FactInternetSales[OrderDate] <= EOP,

ALL (DimDate)

)

VAR DateFilter =

FILTER (

KEEPFILTERS (VALUES ('DimDate'[Date])),

'DimDate'[Date] >= DATE (2013, 1, 1) && 'DimDate'[Date] <= DATE (2013, 1, 5

)

)

EVALUATE

SUMMARIZECOLUMNS (

'DimDate'[Date],

DateFilter,

"PendingOrdersCount", FactInternetSales[PendingOrdersCount])

Output

Select the entire query text (including comments is OK) and

press the Format Query button in the ribbon to format the

query and ensure that there are no syntax errors. Then, click

the Run Query button (or F5) to execute the query. Compare

your results (Results tab) with Figure 22.3.

Figure 22.3 The results of the query with the

PendingOrdersCount query-scoped measure.

Analysis

The query starts by defining the measure formula

immediately after the DEFINE statement (you can define

variables before measures if you prefer). Because you want

to group results by just one field (DimDate[Date]), there is no

need for a second table variable to filter data further. To

make it more intuitive, I renamed the first table variable to

DateFilter and changed the filter expression to filter the first

five days in January 2013.

If you need more explanation about how the

PendingOrderCount measure works, refer to the "Changing

Filter Context" lesson. To recap, the measure declares an EOP

variable that returns the last date in the current date context

(this will be the date that appears in each row in the query

results). Then, the measure calculates the distinct count of

the SalesOrderNumber column values where the current date

falls between the order date and ship date.

22.3 Summary

You can use DAX Studio to create and test measures and

variables. This lesson introduced you to the query

capabilities of DAX Studio. It showed you how to retrieve the

measure formulas from the model and how to work with

custom measures. One of the most useful features of DAX

Studio is that it can help you profile the query performance,

and this is the subject of the next lesson.

Lesson 23

Optimizing Query Performance

The Power BI in-memory engine (xVelocity) gives your

reports a significant performance boost because the

computer memory is the fastest storage medium. However,

every technology has a limit and xVelocity is no exception.

Inefficient DAX measures can slow down your reports and

slow reports annoy end users.

This lesson shares practical tips to help you troubleshoot

and optimize your DAX measures. I'll show you how to find

which visual slows down a report and how to analyze the

query performance. I'll also share best practices for

optimizing DAX measures and I'll show you how to apply

them to optimize a slow measure. You'll find the query

examples in \Source\Part5\Optimizing Query

Performance.dax.

23.1 Understanding DAX Performance

"This report is slow!" I hope you never hear this, but the

chances are that you will sooner or later. No one likes

watching a spinning progress indicator and waiting for the

report to show up. DAX calculated columns, implicit

measures, and simple "wrapper" measures are unlikely to

impact performance. Not so much, however, about more

complex explicit measures.

23.1.1 Understanding Query Execution

Understanding the query execution requires understanding

where the query time is spent. Analysis Services Tabular (the

backend service that hosts Power BI models) has two

engines: a formula engine and a storage engine.

About the formula engine

When Analysis Services Tabular receives a DAX query, its

formula engine parses the query, evaluates the formulas,

and creates an execution plan. The formula engine can also

take over more complicated computation tasks. If the

formula engine determines that a calculation can be run

more efficiently (for example, an IF function or the LASTDATE

function), it adds a callback to itself in the storage engine

query, so that it can process some of the work. Though the

formula engine is single threaded per query, it can be called

in parallel from the multiple threads in the storage engine.

About the storage engine

The xVelocity storage engine (often referred to by its old

name VertiPaq) is designed to efficiently scan the in-memory

data. The lesson "Understanding storage" covered the

xVelocity storage engine in more detail. The execution plan

produced by the formula engine will likely require many

queries for data retrieval that the formula engine sends in

parallel to xVelocity. The storage engine also supports basic

aggregates and predicates, such as WHERE, SUM, and

GROUP BY.

TIP As a general best practice, try to rewrite your DAX measures in such a way

that they push as much work to the storage engine as possible. Because the

storage engine is highly parallel, queries typically benefit from more CPU cores,

faster memory, and more CPU cache. Of course, when you publish your models to

Power BI, you have no control over the hardware, unless your organization is on

Power BI Premium.

23.1.2 Understanding Optimization Steps

In general, DAX performance optimization involves four high-

level steps:

1.Identify slow queries

2.Identify slow measures

3.Find the source of performance degradation

4.Apply optimizations and retest

Identifying slow queries

It's best to analyze the query performance in an isolated

environment. For Power BI, this means opening the model

locally in Power BI Desktop as opposed to testing a published

model. In the previous lesson, I showed you how to capture

the queries behind the report visuals in DAX Studio (recall

that you can also use the Power BI Desktop Performance

Analyzer to get the queries). Once you capture the queries,

you can pinpoint the slow queries by analyzing their

duration.

If you can't obtain the Power BI Desktop file, you might

still be able to profile a published report if it's deployed to a

workspace in a Power BI premium capacity. To do so, you can

connect DAX Studio (or SQL Server Profiler) to the XMLA

endpoint of that workspace.

Be aware of the internal caching that Power BI uses to

cache query results both in Power BI Desktop and Power BI

Service. For example, if you select another report page and

go back to the previous page, you may not capture any

queries because Power BI reuses identical query results.

TIP Suppose you have a report with multiple pages and one of the pages is slow

to load. You can select another report page and close Power BI Desktop. Then,

open Power BI Desktop and load the file. Power BI Desktop should load the last

active page. Once you set up DAX Studio for tracing, click the slow page to

capture its queries.

Identifying slow measures

A visual can have multiple measures. The principle of

elimination is the best way to find which measures

deteriorate performance the most. Once you capture the

query, load the query in DAX Studio (or SSMS), and comment

its measures one by one to exclude them from the query.

Then, execute the DAX query and see if it runs any faster.

NOTE Analysis Services also has caches and it may service queries from the

cached results. When testing DAX queries, it's important to clear these internal

caches before executing the query to avoid skewed results. If you expand the Run

button in the DAX Studio, you'll see a "Clear Cache and Run" option, which will

clear the cache and run the query in one step. Or, you can click the "Clear Cache"

ribbon button before you run the query.

Finding the source for performance degradation

This is the most important step. Start by finding in DAX

Studio if the query is formula engine or storage engine

bound. You can also examine the physical and logical plans

by enabling the Query Plans button, but these plans are very

verbose and difficult to interpret. You'd probably find yourself

alternating between this step and the next one until you

pinpoint the performance culprit.

Applying optimizations

This step is more art than science. Here are some general

best practices for optimizing DAX:

1.Optimize storage – Focus on optimizing storage if the most

time is spent in the storage engine. Use the VertiPaq

Analyzer (see Lesson 3) to understand column cardinality

and consumed storage. Remove unused high-cardinality

columns. Use a good star schema with limited snowflaking.

Disable built-in date tables if you don't use them and they

consume a lot of storage. Use more compact data types,

such as Whole Number instead of Decimal Number, if you

don't need decimals. Consider denormalizing commonly used

fields from large dimensions into the fact tables.

TIP Relationships on high-cardinality columns, such as Sales[CustomerKey] ->

Customer[CustomerKey] could be expensive with millions of rows. Consider

eliminating these joins by duplicating commonly used dimension columns into

the fact table so that the entire query can be answered by just one table.

2.Materialize when possible – Instead of a performance

intensive measure, consider materializing the whole measure

or a part of its formula as a calculated column or a custom

column in Power Query or SQL. You'll see an example of this

technique in a moment.

3.Use CALCULATE filters --- Instead of using the FILTER

function to filter entire tables, use filters in CALCULATE. For

example, instead of writing CALCULATE(<expression>,

FILTER (<table>, <criteria>)), use

CALCULATE(<expression>, <criteria>). Refer to Lesson 7 for

examples illustrating this approach.

4.Use variables – Variables are evaluated once. This results in

a faster execution plan when the same expression appears

multiple times in a formula.

23.2 Finding and Fixing Performance

Issues

Now that you know the essentials of DAX performance

optimization, let's put what you've learned into practice. The

"Optimizing Query Performance" page in the

\Source\Part5\Adventure Works.pbix file is slow. You need to

investigate the performance degradation and, if possible, fix

it.

23.2.1 Identifying Slow Queries

This report page has two visuals. To start with, you'll use DAX

Studio to identify which query slows down the overall report

execution.

Practice

To avoid dealing with cached queries, make sure that Power

BI Desktop opens with another page selected.

1.Open the \Source\Part5\Adventure Works.pbix file in Power

BI Desktop.

2.Select another page, such as the "Creating and Testing

Measures" page. Remember to save the file and close Power

BI Desktop.

3.Open Power BI Desktop again and load the Adventure

Works.pbix file. The Report View should open with the

"Creating and Testing Measures" page active.

4.Open DAX Studio and connect to the Adventure Works

model using the PBI/SSDT connectivity option.

5.Click the All Queries button in the ribbon.

6.Switch to Power BI Desktop and select the "Optimizing

Query Performance" page. Wait for the page to load.

7.Back to DAX Studio, select the All Queries tab in the query

pane. You should see two queries captured. One of the

queries has a significantly higher duration (about 10

seconds).

Analysis

To make sure Power BI Desktop doesn't cache queries, you

need to open it with another page (you can add a blank page

if you prefer). Once DAX Studio captures the queries, you

can quickly identify the slowest queries so you can focus on

them.

23.2.2 Identifying Slow Measures

Next, if the query has multiple measures, you need to

identify which one(s) are the most performance intensive.

Practice

1.Double-click the slow query to load it in the query pane.

You should see this DAX code:

DEFINE VAR __DS0FilterTable =

FILTER(KEEPFILTERS(VALUES('DimDate'[Date])), 'DimDate'[Date] >= DATE(2014,

1, 1))

EVALUATE

TOPN(502,

SUMMARIZECOLUMNS(

ROLLUPADDISSUBTOTAL('DimDate'[Date], "IsGrandTotalRowTotal"),

__DS0FilterTable,

"OrderCount_WoW", 'FactInternetSales'[OrderCount WoW],

"OrderCount7", 'FactInternetSales'[OrderCount7],

"OrderCount14", 'FactInternetSales'[OrderCount14]

),

[IsGrandTotalRowTotal], 0,

'DimDate'[Date], 1)

ORDER BY [IsGrandTotalRowTotal] DESC, 'DimDate'[Date]

2.Comment OrderCount7 and OrderCount14 measures by

typing a double hyphen (--) in front of the corresponding

lines so that only the OrderCount_WoW measure will be

used. Remove the comma at the end of the line for this

measure.

3.Expand the Run button in the ribbon and select "Clear

Cache then Run". Click the Run button to clear the cache and

run the query.

Analysis

By isolating measures, you determine that the "OrderCount

WoW" measure is the slowest (it takes about 5 seconds to

execute). You used the "Clear Cache then Run" option to

clear all runtime caches so that the query executes without

caching.

23.2.3 Finding the Source

Next, you need to find which specific DAX formula is the

performance culprit. Start with a high-level analysis of where

the query time is spent.

Practice

Let's execute the query again but this time you'll enable the

Server Timings feature in DAX Studio.

1.If the All Queries button is pressed, press it to stop tracing

queries.

2.Click the Server Timings button in the ribbon. This adds a

new "Server Timings" tab in the query pane.

3.Click the Run button again to run the query. Once the

results come back, switch to the Server Timings tab (see

Figure 23.1).

Figure 23.1 Use the Server Timings tab to get an idea of

where the query time is spent.

Analysis

The Server Timings tab reveals important information about

the query execution. The metrics on the left side are:

 Total – the total execution query time.

 SE CPU – The estimated storage engine time if the query

was executed on a single thread.

 FE – The query time spent in the formula engine.

 SE – The query time spent in the storage engine.

 SE Queries – The number of queries sent to the storage

engine.

 SE Cache – The percentage of queries that were answered

by the storage engine cache.

In this case, most of the query time was spent in the storage

engine, which is preferable. The query resulted in 804

queries to the storage engine. In the right pane, you can see

the actual storage engine queries and sort them by duration.

Most of these queries uses the DCOUNT function to count

distinct orders.

23.2.4 Applying Optimizations

Distinct count is a very expensive operation and the best

way to optimize is to avoid it if possible. Let's see how this

approach could work in this case.

Practice

Let's add the definition of the "OrderCount WoW" measure to

the query.

1.In the Metadata pane, hover over the magnifying class and

type WoW to locate the measure.

2.Right-click the "Order Count WoW" measure and click

"Define and Expand Measure". This adds the definition of this

measure and all dependent measures in the DEFINE query

clause. Now you can see that "OrderCount WoW",

OrderCount7, and OrderCount14 measures use the

OrderCount measure which has this formula:

MEASURE FactInternetSales[OrderCount] =

DISTINCTCOUNT(FactInternetSales[SalesOrderNumber])

3.Replace the DISTINCTCOUNT function with this formula

which uses SUMX.

MEASURE FactInternetSales[OrderCount] = SUMX(FactInternetSales,

IF(FactInternetSales[SalesOrderLineNumber] = 1, 1))

4.Run the query again with Server Timings enabled. Now the

query executes in only 87 milliseconds!

Analysis

Instead of counting distinct orders, the formula checks if the

current row in FactInternetSales is the first order line item

and returns one if this is the case (otherwise the IF

statement returns a blank value). Then, SUMX sums the

result to count the first line items in every order that's in the

filter scope. You can now update the OrderCount measure in

the Adventure Works model with this formula and the report

will run instantaneously.

23.3 Summary

DAX can humble even experienced developers. Slow reports

are typically caused by inefficient DAX formulas. Instead of

throwing in more hardware (if this is even an option), plan to

analyze and optimize your DAX measure relentlessly using

the techniques you learned in this lesson. DAX Studio can

help you analyze the query performance and test different

measure versions to find the one that performs the best.

Lesson 24

Using Power BI Report Builder

One of the most prominent Power BI architectural strengths

is that it doesn't lock you into just one reporting tool. Besides

Power BI, you can use a reporting tool of your choice, such as

Excel, Power BI Report Builder, or any MDX or DAX-aware

third-party tool, to analyze your data. Some reporting tools,

however, are less interactive and might require a query for

each dataset. In this lesson, you'll learn how to create and

parameterize a DAX query in a Power BI Report Builder

report. You'll find the query examples in \Source\Part5\Using

Power BI Report Builder.dax.

24.1 Understanding Power BI Report

Builder

Long before Power BI was Microsoft SQL Server Reporting

Services (SSRS) – the Microsoft flagship reporting tool for

creating paginated reports. Paginated reports are traditional,

paper-oriented reports that are designed to be printed or

exported. Although lacking in interactivity, SSRS reports

have always excelled in extensibility. You'll be hard pressed

to find a requirement that you can't meet with SSRS reports,

although creating paginated reports is not as easy as Power

BI reports and requires specific report authoring skills.

24.1.1 When to Use Report Builder

Microsoft provides two designers for authoring paginated

reports. The SQL Server Data Tools (SSDT) Report Designer

integrates with Visual Studio and targets BI professionals.

Report Builder is for business users willing to create and test

reports outside Visual Studio. In April 2019, Microsoft

introduced a special version of this tool called Power BI

Report Builder that's optimized for creating paginated

reports from published Power BI datasets and deploying

these reports to Power BI. This is conceptually like how you

can use the Power BI Analyze in Excel feature to create Excel

reports from published datasets.

Understanding usage scenarios

In a nutshell, consider using Report Builder when paginated

reports might be preferable compared to Power BI reports.

Here are the main reasons:

 More demanding reporting requirements – Power BI reports

are very easy to create but they are also somewhat

simplistic. Report Builder supports more sophisticated

report layouts, such as nesting report items (a chart

repeated for each row in a table).

 Better control over the report layout – As I mentioned,

paginated reports are designed to pixel-perfect. Every

organization requires a list of standard reports that don't

require too much interactivity and are designed to be

printed or exported.

 Extensibility – Almost every aspect of paginated reports

can be customized or extended, including plugging in

custom data sources, subscription delivery channels,

export formats, and even implementing custom security.

NOTE I've been privileged to contribute to and witness the evolution and success

of Microsoft SQL Server Reporting Services since its debut in 2004. SSRS is

Microsoft's most mature and extensible reporting platform. Although written more

than a decade ago, my book "Applied Microsoft SQL Server 2008 Reporting

Services" (768 pages) should help you appreciate the breath of its features.

Understanding Power BI limitations

As of the time of writing, Power BI paginated reports are a

preview feature that requires Power BI Premium. Many of the

SSRS features are not available but Microsoft is working hard

to migrate them to Power BI. For example, Power BI supports

only a subset of the SSRS data sources, and it doesn't

support shared data sources and datasets, subreports and

drillthrough reports, as well as management features, such

as report caching. For more information about existing

limitations, read the article "What are paginated reports in

Power BI Premium?" at https://docs.microsoft.com/ power -

bi/paginated-reports-report-builder-power-bi.

Figure 24.1 The Analysis Services Query Designer can auto-

generate DAX and MDX queries.

24.1.2 Understanding the Analysis Services

Query Designer

Like Power BI, Report Builder has the concept of datasets.

However, a Report Builder dataset always connects directly

to the data source (the data is not imported). Report Builder

requires you to specify a query for each dataset. It includes

graphical query designers to help you auto-generate queries

for some Microsoft data sources, such as SQL Server and

Analysis Services. The Analysis Services Query Designer (see

Figure 24.1) deserves more attention because it can

generate DAX queries.

NOTE Besides Report Builder, you'll find the Analysis Services Query Designer in

SQL Server Management Studio (SSMS), when you browse a Tabular model or a

Power BI model. One notable difference is that SSMS doesn't support

parameterizing the query (only Power BI Report Builder supports it).

Understanding connectivity options

You can connect Report Builder to any of the Analysis

Services data sources (published reports require a Power BI

gateway to connect to on-prem data sources):

 Published Power BI datasets – Currently, this option

requires the dataset to be hosted in a premium

workspace. Use the XMLA endpoint syntax to connect to

the workspace:

powerbi://api.powerbi.com/v1.0/myorg/[your workspace name]

 Analysis Services Multidimensional or Tabular models –

This includes SQL Server Analysis Services

(Multidimensional and Tabular) and Azure Analysis

Services Tabular.

 Published Power Pivot models – You can also connect to

Power Pivot models deployed to SharePoint Server.

Auto-generating queries

A unique feature of this designer is that it can autogenerate

MDX and DAX queries (recall that Analysis Services supports

these two query interfaces). You can toggle the Syntax Type

drop-down to select a query type. Then, just drag fields from

the left Metadata pane into the right query pane. Click the

Exclamation button to run the query and see the results. To

see the query text, toggle the Design Mode button.

Remember that you can customize and optimize the query in

Text Mode, such as to use variables, but you can't switch

back to the graphical interface (Design Mode) without losing

your changes.

You can also parameterize your queries. To do so, drag one

or more fields to the Filter pane (above the query pane),

specify an operator, and a default value. To promote the filter

to a parameter, don't forget to check the Parameters

checkbox. The query designer will auto-generate a hidden

dataset for each parameter, and it will make the necessary

changes to the main dataset.

Figure 24.2 The Sales Summary paginated report connects

to a Power BI model.

24.2 Creating a Paginated Report

Next, you'll practice using the Power BI Report Builder to

create a paginated report that uses a DAX query to retrieve

the data. The Sales Summary crosstab report (see Figure

24.2) sources data from a Power BI model. I included the

report definition in the \Source\Part5 folder.

24.2.1 Getting Started with Power BI Report

Builder

Let's start by installing the Power BI Report Builder and using

one of its wizards to quickly create the report layout. As a

prerequisite, if you want to connect to a published Power BI

model, deploy the Adventure Works model to a premium

workspace (in the Power BI portal, premium workspaces

have a diamond icon next to their names). If you don't have

access to a premium workspace, you can follow along by

connecting to your local Power BI Desktop model.

Practice

Follow these steps to install Power BI Report Builder:

1.Open your web browser and navigate to powerbi.com. Log

in with your credentials.

2.In the Power BI portal, click the Download menu in the top

right corner and then click "Paginated Report Builder". This

navigates you to the Microsoft Power BI Report Builder

download page. Download and install the setup program.

3.Open Power BI Report Builder on the desktop. In the

Getting Started splash screen, choose "Table or Matrix

Wizard".

4.In the "Choose the dataset" step, select the "Create a

dataset" option to set up a new dataset.

5. In the "Choose a connection to a data source" step, click

New. In the "Data Source Properties" window, rename the

data source from DataSource1 to AdventureWorks. Expand

the "Select connection type" dropdown and choose

"Microsoft SQL Server Analysis Services". Currently, you

must use this data source to connect to published models

although Microsoft has indicated that they plan to introduce

a data source for published datasets). Click the Build button.

6.In the Connection Properties window, enter one of the

following in the "Server name" field:

 The XMLA endpoint address – In case you connect to a

published Power BI model, enter the XMLA endpoint

address for the premium workspace. Power BI Report

Builder will ask you to provide your credentials to log in to

Power BI.

 The local Tabular instance address behind the Power BI

Desktop model – Once you open the Adventure Works

model in Power BI Desktop, use DAX Studio to get this

address, which will be in the format localhost:port. This

option won't ask you to authenticate because it will use

your Windows identity. You can use this connectivity option

to test Power BI Report Builder if you don't have access to

Power BI Premium, but remember that it will work only on

your desktop (a published report won't be able to

connect).

7.In the Connection Properties window, expand the "Connect

to a database" dropdown and select your Power BI Desktop

file. If you connect to the local Tabular instance, you'll see

only one item with a system-generated Global Unique

Identifiers (guid) name.

8.Click "Test Connection" to test connectivity. If all is well,

click OK to return to the "Data Source Properties" window.

The "Connection string" field should now be populated. Click

OK. Then, click Next to advance to the wizard's "Design a

query" step.

Analysis

Currently, Report Builder comes in two flavors: SQL Server

Reporting Services and Power BI. The former is designed to

work with an SSRS report server and supports all SSRS

features. The latter is designed to integrate with Power BI

and support only paginated report features that are

compatible with Power BI. Both versions produce paginated

reports described in a documented Report Definition

Language (RDL) specification.

Given the subject of this book, the most interesting

connectivity options for the reader would be connecting to

Analysis Services Tabular and Power BI models, and then

publishing the report to Power BI. Currently, paginated

reports are a Power BI Premium feature.

24.2.2 Working with DAX Queries

The "Design a query" step is where you design the DAX

query using the Analysis Services Query Designer. Let's

quickly create and examine the generated DAX query.

Practice

Instead of creating the query from scratch, you'll auto-

generate it by dragging and dropping fields. Notice that the

query designer supports only explicit measures. Unlike Power

BI, you can't create implicit measures.

1.In the Metadata pane, expand the Measures folder and

then expand the FactResellerSales folder. Drag the "Net Profit

(m)" measure and drop it in the query pane. Or, right-click

the measure and then click "Add to Query". The order you

add the query fields in is insignificant.

2.Expand the DimProduct table and add

EnglishProductCategoryName and

EnglishProductSubcategoryName to the query.

3.Expand the DimDate table and add CalendarYear and

EnglishMonthName fields to the query.

4.To parameterize the report by country, expand

DimSalesTerritory and drag SalesTerritoryCountry to the filter

pane above the query pane. Expand the Operator field and

choose the "Equal" operator. Expand the Filter Expression

field and check the All item to default the parameter to all

countries. To promote the filter to a report parameter, check

the Parameters checkbox.

5.Click the Execute Query (the exclamation point button) to

run the query. Compare your results with Figure 24.1.

6.Toggle the Design Mode button to switch to text mode.

Notice that the tool has generated the following DAX query:

DEFINE

VAR DimSalesTerritorySalesTerritoryCountry1 =

IF (

PATHLENGTH (@DimSalesTerritorySalesTerritoryCountry) = 1,

IF (

@DimSalesTerritorySalesTerritoryCountry <> "",

@DimSalesTerritorySalesTerritoryCountry,

BLANK ()),

IF (

PATHITEM (@DimSalesTerritorySalesTerritoryCountry, 2) <> "",

PATHITEM (@DimSalesTerritorySalesTerritoryCountry, 2),

BLANK ())

)

VAR DimSalesTerritorySalesTerritoryCountry1ALL =

PATHLENGTH (@DimSalesTerritorySalesTerritoryCountry) > 1

&& PATHITEM (@DimSalesTerritorySalesTerritoryCountry, 1, 1) < 1

EVALUATE

SUMMARIZECOLUMNS (

'DimProduct'[EnglishProductCategoryName],

'DimProduct'[EnglishProductSubcategoryName],

'DimDate'[CalendarYear],

'DimDate'[EnglishMonthName],

FILTER (

VALUES ('DimSalesTerritory'[SalesTerritoryCountry]),

((DimSalesTerritorySalesTerritoryCountry1ALL

|| 'DimSalesTerritory'[SalesTerritoryCountry] =

DimSalesTerritorySalesTerritoryCountry1))

),

"NetProfit (m)", [NetProfit (m)])

7.Click Next to advance to the next step. In the Arrange

Fields step, drag the EnglishProduct Category Name and

EnglishProductSubcategoryName fields to the "Row group"

area, CalendarYear and EnglishMonthName fields to the

"Column groups" area, and NetProfit_m field to the Values

area.

8.Accept the defaults in the next steps and then click Finish.

Power BI Report Builder generates the report definition and

opens the report in design mode.

9.Click the Run button (or press F5) to run and test the

report. It should look like Figure 24.2, although I've made a

few layout tweaks to polish the report appearance a bit.

Analysis

By default, the query designer creates multivalue

parameters, but the query syntax doesn't support them. For

example, if you select multiple countries and run the report,

you'll get a "Type mismatch" error. To avoid this, you must

toggle the Multi-value Parameters button in the Analysis

Services Query Designer in DAX mode, which rewrites the

query completely and uses an undocumented

RSCustomDaxFilter function.

TIP You don't have to stick to the auto-generated DAX queries and their

limitations. My blog "SSRS Multivalue Parameters in DAX"

(https://prologika.com/ssrs-multivalue-parameters-in-dax/) shows you how to

modify the query to handle multivalue parameters and simplify its syntax.

Unfortunately, once you take the custom query path, you can't use the graphical

query designer and its drag-and-drop feature anymore.

The query starts by declaring two variables for detecting the

parameter selection. The first variable,

DimSalesTerritorySalesTerritoryCountry1, detects the

selected country. The second variable is to detect if all

countries or the "All" value are selected. To understand these

variables better, exit the query designer, right-click the

Datasets node in the Report Data pane, and then click "Show

Hidden Datasets". You'll see another dataset that the query

designer has generated for the parameter's available values.

This dataset uses this DAX query:

EVALUATE

SELECTCOLUMNS (

ADDCOLUMNS (

SUMMARIZECOLUMNS (

ROLLUPADDISSUBTOTAL ('DimSalesTerritory'[SalesTerritoryCountry], "h0")

),

"ParameterLevel", IF ([h0], 0, 1)

),

"ParameterCaption", SWITCH (

[ParameterLevel],

1, "" & 'DimSalesTerritory'[SalesTerritoryCountry],

"All"

),

https://prologika.com/ssrs-multivalue-parameters-in-dax/

"ParameterValue", [ParameterLevel] & "|" &

'DimSalesTerritory'[SalesTerritoryCountry],

"ParameterLevel", [ParameterLevel],

"'DimSalesTerritory'[SalesTerritoryCountry]",

'DimSalesTerritory'[SalesTerritoryCountry])

Figure 24.3 shows you the results from this query.

Figure 24.3 This dataset is used for the parameter's

available values.

The query constructs a ParameterValue column. Does its

syntax look familiar? It complies with the output of the DAX

PATH function. And the ParameterLevel column returns the

value level (indentation) with the All value being at level 0

and other values at level 1 (a hierarchy may have more

levels).

Going back to the main query,

@DimSalesTerritorySalesTerritoryCountry represents the

parameter value that the report passes to the query. You can

see this placeholder defined on the dataset properties page

(Parameters tab). The variables use the PATHLENGTH and

PATHITEM functions to detect the parameter level and the

actual value. Finally, like Power BI-generated queries,

SUMMARIZECOLUMNS is used to group the query and filter

the results for the selected parameter value.

24.3 Summary

Some reporting tools, such as Power BI Report Builder, can't

auto-generate DAX when you interact with the report and

require you to specify dataset queries. Power BI Report

Builder includes an Analysis Services Query Designer that

can generate DAX queries at design time. You can also use

the knowledge from this book to customize the generated

DAX queries or replace them with your own queries.

PA RT 6

Advanced DAX

Now that you know how to create the three DAX constructs

(calculated columns, measures, and queries), you're ready to

tackle more advanced scenarios with DAX. This part of the

book starts by showing you how DAX can help you work with

different types of joins, including recursive (parent-child),

many-to-many, inner, outer, and other joins.

If you need to restrict certain users to a subset of the data,

you need data security. I'll show you how to implement row-

level security (RLS) with DAX. You'll also learn how to handle

more complicated security policies, such as by externalizing

the secured entities in a separate table.

You'll find the completed exercises and reports for this part

of the book in the Adventure Works and Bank models that

are included in the \Source\Part6 folder.

Lesson 25

Recursive Relationships

So far, you've created DAX calculations that work with

regular relationships where a dimension (lookup) table joins

to the fact table directly. In this lesson, you'll learn how to

work with recursive relationships, which DAX doesn't support

natively, but it has functions that are specifically designed

for this relationship type. You'll find the DAX formulas in

\Source\Part6\Recursive Relationships.dax.

25.1 Understanding Recursive

Relationships

A recursive (also known as parent-child) relationship

represent is a hierarchical relationship formed between two

entities with an arbitrary number of levels. Common

examples of parent-child relationships include an employee

hierarchy, where a manager has subordinates who in turn

have subordinates, and an organizational hierarchy, where a

company has divisions, offices, and branches.

25.1.1 Modeling Recursive Hierarchies

In a regular hierarchy, each level has a separate column and

usually the number of levels is small. A recursive hierarchy

on the other hand is a hierarchy formed by two columns that

define a recursive relationship among the hierarchy

members.

Figure 25.1 The ParentEmployeeKey column contains the

identifier for the employee's manager.

Modeling parent-child columns

The EmployeeKey and ParentEmployeeKey columns in the

DimEmployee table have a parent-child relationship, as

shown in Figure 25.1. Specifically, the ParentEmployeeKey

column points to the EmployeeKey column (the primary key

of the DimEmployee table) to identify the employee's

manager. For example, Kevin Brown (EmployeeKey = 2) has

David Bradley (EmployeeKey=7) as a manager, who in turn

reports to Ken Sánchez (EmpoyeeKey=112). (Ken is not

shown in the screenshot.) Ken Sánchez's ParentEmployeeKey

is blank, which means that he's the top manager.

Recursive hierarchies might have an arbitrary number of

levels. Such hierarchies are called unbalanced hierarchies.

For example, Kevin is a marketing manager and his branch in

the organizational chart may consist of only two levels.

However, James Hamilton, who's a vice president of

production and also reports to Ken, might have a deeper

hierarchy.

When to use recursive hierarchies

A recursive hierarchy is typically used to model deep

relationships, such as a manager-subordinate relationship,

that may require many levels and creating a column for each

level might be limiting and impractical. To model a recursive

hierarchy as a regular hierarchy you need to estimate the

maximum number of levels. Then, you'd probably increase

that number to accommodate the case where the hierarchy

levels increase in the future. Recursive hierarchies solve this

issue elegantly by requiring only two columns.

All popular relational database management systems

(RDBMS) support parent-child relationships. They may also

enforce constraints to prevent deleting a parent, which may

lead to orphan members.

25.1.2 Handling Recursive Relationships in DAX

Unfortunately, DAX doesn't natively support recursive

relationships. It doesn't have functions to traverse

hierarchies either, such as to find the ancestor or

descendants of a current member. However, it has functions

to "flatten" the levels in a recursive hierarchy to columns and

to return the path to each member (see Table 25.1)

Table 25.1 DAX has specific functions for recursive hierarchies.

Function Syntax DescriptionFunction Syntax Description

PATH PATH (<PrimaryColumn>,

<ParentColumn>)

Returns the entire path to the current

member as a delimited list starting from

the top

PATHLENGTH PATHLENGTH (<Path>) Returns the number of levels before and

including the current member

PATHITEM PATHITEM (<Path>, <Position> [,

<Type>])

Returns the item at a specified position

starting from the left of the delimited list

produced by the PATH function

PATHITEMREVERSE PATHITEMREVERSE (<Path>,

<Position> [, <Type>])

Same as PATHITEM but going in reverse

(from lower to higher levels)

PATHCONTAINS PATHCONTAINS (<Path>, <Item>) Returns TRUE if the specified item exists

in the delimited list produced by the PATH

function

All these functions are designed to work in the row context,

so you'll use them to add calculated columns to the table

containing the recursive hierarchy.

Functions for hierarchy paths

The mother of all DAX recursive functions is PATH. This

function produces the hierarchy path as a delimited string

from the top member to the current member. For example, a

path of "112|7|2" means that the top member is 112, the

immediate descendant is 7, and 2 is the identifier of the

current member.

You can use PATHLENGTH to find how many levels a given

member has. For example, PATHLENGHT("112|7|2") returns

3. This function could be useful to find the number of

ancestors by subtracting one from the return value.

Functions for locating members

You can locate a member by using the PATHITEM item

function and specifying a starting position and offset. For

example, PATHITEM ("112|7|2", 1, 0) returns 112 because

this member is at the top. The third argument (Type)

specifies the data type of the output and it takes one of

these two values: 0 (returns the member identifier as a

number) and 1 (returns the identifier as text). And

PATHITEMREVERSE works the same way but in the opposite

direction.

PATHCONTAINS checks if a member identifier is in the

hierarchy path. You'll use this function later in this part of the

book to implement a row-level security filter that restricts

the user to see only his sales and the sales of his

subordinates.

25.2 Working with Recursive

Relationships

Next, you'll practice the DAX functions for handling recursive

relationships. You'll use the DimEmployee table in the

Adventure Works model for this practice. You'll start by

creating a hierarchy to drill down the organizational chart.

Then, I'll show you how to hide members that don't have

data.

25.2.1 Creating a Recursive Hierarchy

Before you can create an organizational hierarchy to analyze

sales by the manager-subordinate relationship, you must first

flatten the recursive relationship into levels.

Practice

As a first step, use the PATH function to return the hierarchy

path for each employee.

1.If you don't have a FullName calculated column in the

DimEmployee table, add a calculated column FullName to

this table with the following formula:

FullName = [FirstName] & " " & [LastName]

2.Add a Path calculated column to the Employee table with

the following formula:

Path = PATH([EmployeeKey], [ParentEmployeeKey])

NOTE You may get the following error with your real-life models when you use

the PATH function: "The columns specified in the PATH function must be from the

same table, have the same data type, and that type must be Integer or Text". The

issue could be that the parent key column is of a Text data type. This might be

caused by a literal text value "NULL" in the ParentEmployeeKey, while it should

be a blank (null) value. To fix this, open the Power Query Editor (right-click the

table and click Query Editor), right-click the text column, and then click Replace

Values. In the Replace Value dialog, replace NULL with blank. Then, in the Power

Query Editor (Home ribbon tab), change the column type to Whole Number and

click the "Close & Apply" button.

The formula uses the PATH function, which returns a

delimited list of IDs (using a vertical pipe as the delimiter)

starting with the top (root) of a parent-child hierarchy and

ending with the current employee identifier.

The next step is to flatten the parent-child hierarchy by

adding a column for each level. This means that you need to

know beforehand the maximum number of levels that the

employee hierarchy might have. To be on the safe side, add

one or two more levels to accommodate future growth.

3.Add a Level1 calculated column that has the following

formula:

Level1 = LOOKUPVALUE([FullName], [EmployeeKey], PATHITEM ([Path],1,1))

This formula uses the PATHITEM function to parse the Path

calculated column and return the first member identifier as a

number (notice that the third argument is 1), which is 112.

Then, it uses the LOOKUPVALUE function to return the full

name of the corresponding employee, which in this case is

Ken Sánchez.

4.Add five more calculated columns for Levels 2-6 that use

similar formulas to flatten the hierarchy all the way down to

the lowest level. Compare your results with Figure 25.2.

Figure 25.2 Use the PATHITEM function to flatten the

parent-child hierarchy.

5.Hide the Path column in the Employee table as it's not

useful for analysis.

6.Create an Employees hierarchy consisting of six levels

based on the six columns you just created. To create the

hierarchy, right-click the DimEmployee[Level1] column in the

Fields pane, and then click "New Hierarchy". Rename the

new hierarchy to Employees. Then, right-click the remaining

Level2 to Level6 columns one by one and then click "Add to

hierarchy -> Employees".

Output

Let's create a quick report to test the results.

1.Add a Matrix visualization to analyze sales by the

Employees hierarchy. To do so, add the Employees hierarchy

to the Row area and ResellerSales[SalesAmount] to the

Values area.

2.Right-click Ken Sanchez and click Expand -> All. Compare

your results with Figure 25.3.

Analysis

Going back to the Data View tab, notice that most of the

cells in the Level 5 and Level 6 columns are empty, and

that's okay because only a few employees have more than

four indirect managers. However, what doesn't look right are

the empty cells in the Matrix visual which are the byproduct

of the missing levels.

For example, Joe Pak reports to Amy Alberts and he is at

Level 4 in the organizational hierarchy. His levels 5 and 6 are

empty and the report shows them as empty cells.

Figure 25.3 The empty members correspond to blank levels

in the Employees hierarchy.

25.2.2 Refining a Recursive Hierarchy

Unfortunately, Power BI doesn't make it easy to hide these

blank members. The backend Tabular server has a

HideMembers property, but it's not yet exposed in Power BI

Desktop. Of course, this presents another opportunity to

hone in your DAX skills.

Practice

Let's add a calculated column and a new measure to handle

the blank members.

1.Add a LevelNumber calculated column to the DimEmployee

table with the following formula:

LevelNumber = PATHLENGTH ([Path])

2.Add a SalesAmount (h) measure to DimEmployee table with

the following formula:

SalesAmount (h) =

VAR MemberLevel = ISFILTERED(DimEmployee[Level1]) +

ISFILTERED(DimEmployee[Level2]) +

ISFILTERED(DimEmployee[Level3]) + ISFILTERED(DimEmployee[Level4]) +

ISFILTERED(DimEmployee[Level5]) + ISFILTERED(DimEmployee[Level6])

VAR TotalLevels = MAX (DimEmployee[LevelNumber])

RETURN

if(MemberLevel > TotalLevels, BLANK(), SUM(FactResellerSales[SalesAmount]))

Output

Replace the ResellerSales[SalesAmount] measure in the

Matrix report with the DimEmployee[SalesAmount (h)]

measure. Now the report doesn't show empty cells. Compare

your results with Figure 25.4.

Analysis

The SalesAmount (h) measure "fixes" the report and

removes the blank members. Let's analyze how it works. The

LevelNumber calculated column uses the PATHLENGTH

function to return the number of levels in the hierarchy. For

example, LevelNumber returns 4 for Jae Pack because Jae's

path is "112|277|290|291" (has four segments).

The MemberLevel variable in the SalesAmount (h)

measure calculates the current level in the report. When

used in arithmetic calculations, TRUE is treated as 1 so the

variable adds 1 to calculate the level for each member in the

report, including empty members. The TotalLevels variable

returns the LevelNumber value associated with the

employee. Because it's a measure, it must use an aggregate

function. There will be only one row in the filter scope of

each cell and MAX (DimEmployee[LevelNumber]) returns

that value (you can also use the MIN function).

Figure 25.4 The SalesAmount (h) measure removes the

blank members from the report.

The measure then checks if the current level is greater than

the total levels. This condition will return TRUE only for blank

members. If that's the case, the measure returns an empty

(blank) value. Because by default Power BI visuals remove

blank values, the net effect is that the blank members are

excluded from the report.

25.3 Summary

Recursive relationships are typically used to model deep

unbalanced hierarchies. DAX doesn't support them natively

and it doesn't have functions for navigating hierarchies.

However, DAX has functions to flatten the recursive

relationship into columns for each level. Currently,

preventing blank members from showing up in reports

requires changing the measures formulas.

Lesson 26

Many-to-Many Relationships

Another advanced relationship type that you might

encounter is a many-to-many relationship. This lesson

teaches you how to model many-to-many relationships

declaratively and programmatically. You'll find the DAX

formulas in \Source\Part6\ Many-to-Many Relationships.dax.

and you'll use the \Source\Part6\Bank.pbix model for this

practice.

26.1 Understanding Many-to-Many

Relationships

A many-to-many relationship models a many-to-many

cardinality between two tables. This occurs when a row in

the dimension table relates to many rows in the fact table,

and vice versa. Common real-life examples of many-to-many

relationships are joint bank accounts (one customer can

have multiple accounts and a joint account has multiple

customers) and student course enrollment (a student can

enroll in multiple courses and a course has multiple

students).

26.1.1 Modeling Many-to-Many Relationships

Usually, a dimension table joins a fact table directly because

the cardinality between the two tables is one-to-many. Many-

to-many relationships are often tricky to represent and may

require an intermediate table to break the "many-to-many"

relationship into two "one-to-many" relationships.

Understanding bridge tables

The Bank.pbix file demonstrates a simplified version of a

popular many-to-many scenario involving joint bank

accounts. Open it in Power BI Desktop and select the Model

View tab to see the table diagram (see Figure 26.1).

The Customer dimension table stores the bank's

customers. The Account dimension table stores the bank

accounts. The Balances fact table records the account

balances every month and it's joined to the Date table. A

customer might have multiple bank accounts, and a single

account might be owned by two or more customers.

To resolve the Customer-Account many-to-many

relationship, the model introduces an intermediate

CustomerAccount table. This table is also referred to as a

bridge table. In its simplest version, it may have only two

columns: Customer and AccountNumber. Each row

represents an account ownership, as shown in Table 26.1

(notice that the A1 joint account is repeated).

Table 26.1 The CustomerAccount bridge table stores the many-to-many

combinations.

Customer AccountNumber

Teo A1

Maya A1

Teo A2

For example, Teo owns two accounts (A1 and A2) and

account A1 is joined by Teo and Maya. So, this table will have

duplicated customers (if the customer owns multiple

accounts) and duplicated account numbers in the case of

joint accounts.

Figure 26.1 The Customer Account bridge table resolves the

many-to-many relationship.

When to use bridge tables

Large bridge tables (over one million rows) could negatively

impact the performance of your reports. Don't model every

many-to-many scenario with bridge tables. A bridge table is

required to represent the many-to-many relationship

between a dimension table and a fact table. You might be

able to avoid it with a many-to-many relationship between

two dimension tables.

For example, consider Product and Promotion dimensions.

A product could be on multiple promotions and a promotion

can span multiple products. So, this is a many-to-many

relationship. But you can resolve this relationship in the sales

fact table by simply joining it to the Product and Promotion

dimensions with regular many-to-one relationships. When a

sales transaction is posted, the row records the associated

product and promotion. In this case, there is no need for a

bridge table.

But what if a sales transaction can be associated with

multiple promotions? Now you have a many-to-many

relationship between the Promotion dimension table and the

Sales fact table. This requires a bridge table. In fact, the

AdventureWorksDW database models the same scenario with

the FactInternetSalesReason bridge table to represent the

many-to-many relationship between DimPromotion and

FactInternetSales.

26.1.2 Handling Many-to-Many Relationships

By default, a many-to-many relationship will produce wrong

report results, as you'll see when you go through the practice

steps. In general, there are two ways to handle many-to-

many relationships with bridge tables in Power BI. The first

requires reconfiguring the relationship between the fact table

and affected dimension table, while the other requires DAX

formulas.

Using bidirectional filtering

If your schema allows it, you should reconfigure the

relationship from unidirectional to bidirectional because

that's the easiest way to handle many-to-many relationships.

How do you know which relationship to reconfigure? Going

back to Figure 26.1, let's trace the path from the

DimCustomer dimension to the Balances fact table.

Specifically, you're examining the direction of the

relationship arrow.

The Customer -> CustomerAccount relationship has an

arrow pointing to CustomerAccount. This means when the

query involves any field from the Customer table, the filter

context will propagate to CustomerAccount, such as to filter

the accounts that belong to a given customer. This is the

behavior you want, so you don't need to modify this

relationship.

The next relationship is Account <- CustomerAccounts.

Now the relationship path reverses the direction. This means

that the filter won't propagate from CustomerAccounts to

Customer. For example, a balance report by customer will

produce wrong results because the filtered accounts in the

CustomerAccounts table from the first relationship won't

filter the accounts in the Account table. This is the

relationship that deserves special attention.

TIP Don't turn on bidirectional filtering on every relationship to "fix" the report

because this may introduce redundant paths with more complicated schemas

that Power BI will disallow. Instead, trace the relationship path and turn on

bidirectional filtering on the relationship that reverses the path.

To reconfigure the relationship filter direction, open the

relationship properties and change the "Cross filter direction"

property to Both.

Using DAX

Sometimes, you may not have an active relationship or

Power BI might reject a bidirectional relationship if it detects

redundant or ambiguous paths. In this case, you can force

the measures to be evaluated over the bridge table, using

this syntax:

Measure = CALCULATE (<expression>, <bridge_table>)

Or, this syntax:

Measure = CALCULATE (<expression>, SUMMARIZE(<bridge_table>,

<column_name>))

The second formula might give you a better performance.

Translated to the Bank model, the second formula will look

like this:

CALCULATE (<expression>, SUMMARIZE(CustomerAccount, Account[AccountNo]))

This formula filters the Account[AccountNo] values to those

that exist in the CustomerAccount table by using the

SUMMARIZE function. The net effect is the same as using a

bidirectional relationship.

DAX also has a CROSSFILTER function to programmatically

turn on bidirectional filtering. This function has the following

syntax:

CROSSFILTER(<column1>, <column2>, <direction>)

Column1 typically represents the column on the many side of

the relationship, which in our case is

CustomerFilter[AccountNo], while Column2 represents the

column on the one side of the relationship

(Account[AccountNo). But don't worry if you switch the

columns as the function will internally swap them for you.

Finally, the direction argument can have one of three values:

 One – the dimension table filters the fact table (default).

 Both – configures the relationship as bidirectional

 None – no cross-filtering occurs in this relationship

26.2 Working with Many-to-Many

Relationships

You're back to the Bank model in Power BI Desktop. In this

exercise, you'll practice different ways to handle many-to-

many relationships so that reports return expected results.

You'll practice once more handling semi-additive measures

because account balances don't sum across time.

26.2.1 Using Declarative Approach

The Bank model is very simple as it has only five tables. It's

a good candidate for the declarative approach to handle

many-to-many relationships, where you'll reconfigure the

relationships without using DAX.

Practice

Before making any changes, let's see what a balance by

customer report would look like.

1.In the Fields pane, click the Balances[ClosingBalance]

measure to examine its formula in the formula bar.

2.Add a Matrix visual and bind it to Customer[Customer] in

the Rows area, Date[Quarter] and Date[Date] fields in the

Columns area, and the Balances[ClosingBalance] measure in

the Values area.

3.Compare your results with Figure 26.2.

Figure 26.2 This report produces wrong balances per

customer.

Analysis

Like the inventory example in the lesson "Semi-additive

measures", the ClosingBalance measure uses the

LASTNONBLANK function:

ClosingBalance = CALCULATE(SUM(Balances[Balance]),

LASTNONBLANK('Date'[Date], CALCULATE(SUM(Balances[Balance]))))

Consequently, the quarter total shows the last balance

recorded for that quarter and this works as expected.

However, the report shows repeating balances across

customers, which is wrong. If you replace

Customer[Customer] with Account[AccountNo], the report

shows correct results.

Practice

The wrong report results are caused by the many-to-many

relationship between the Customer and Account tables.

Specifically, the CustomerAccounts[AccountNo] ->

Account[Account No] reverses its direction when navigating

the Customer -> CustomerAcount -> Account path.

1.In the Model View, double click the

CustomerAccounts[AccountNo] -> Account[AccountNo]

relationship. Alternatively, click the Manage Relationships

button in the ribbon which is available in any view. Then,

select the CustomerAccounts[AccountNo] ->

Account[AccountNo] relationship and then click Edit.

2.In the "Edit relationship" window, expand the "Cross filter

direction" dropdown and select Both. Click OK.

Output

Once you apply the relationship changes, Power BI refreshes

the report, which now should look like the one in Figure

26.3.

Figure 26.3 This report produces correct results after

reconfiguring the relationship cross-filter direction.

Analysis

The report now shows the correct balances. Because the

CustomerAccounts[AccountNo] -> Account[AccountNo]

relationship is bidirectional (the Model View tab shows a

double arrow), the filter context on the CustomerAccounts

table transfers to the Account table, which in turn applies it

to the Balances table to produce the balance per customer.

Therefore, the filter context propagates from the Customer

table all the way to the Balances table.

26.2.2 Using Programmatic Approach

By default, Power configures all relationships as

unidirectional. Suppose you can't turn on bidirectional

filtering (presumably because it results in ambiguous or

redundant paths). Power BI will detect such conflicts and

disallow them. However, you can use DAX formulas.

Practice

Handling many-to-many relationships in DAX requires

changing the formulas of all measures that will be analyzed

by any field in the Customer table.

1.Deactivate the CustomerAccounts[AccountNo] ->

Account[AccountNo] relationship (or change its cross-filtering

property back to Single).

2.Add a new measure ClosingBalance (a) with the following

formula:

ClosingBalance (a) = CALCULATE(SUM(Balances[Balance]),

LASTNONBLANK('Date'[Date], CALCULATE(SUM(Balances[Balance]))),

CustomerAccount)

Output

Replace the ClosingBalance measure in the report with

ClosingBalance (a). Notice that the report produces the same

results.

Analysis

The formula passes the CustomerAccount table as a filter

argument to the CALCULATE function. This forces DAX to

evaluate the formula for only accounts that exist in the

CustomerAccount bridge table. You can also use this formula:

ClosingBalance (b) =

CALCULATE (

SUM (Balances[Balance]),

LASTNONBLANK ('Date'[Date], CALCULATE (SUM (Balances[Balance]))),

SUMMARIZE (CustomerAccount, Account[AccountNo]))

Lastly, suppose that you prefer the

CustomerAccounts[AccountNo] -> Account[AccountNo] to be

unidirectional by default, but you want to turn on

bidirectional cross-filtering only for specific measures. You

can accomplish this by using the CROSSFILTER function.

ClosingBalance (c) = CALCULATE(SUM(Balances[Balance]),

LASTNONBLANK('Date'[Date], CALCULATE(SUM(Balances[Balance]))),

CROSSFILTER(CustomerAccount[AccountNo]

, Account[AccountNo]

, Both)

)

This measure uses the CROSSFILTER function to achieve the

same effect as turning on bidirectional filtering in the

relationship properties, but it applies the configuration only

for this measure.

26.3 Summary

You'll encounter many-to-many relationships when a many-

to-many data cardinality exists between a dimension table

and a fact table. When modeling many-to-many

relationships, you should always favor active or inactive

relationships because you'll get better performance and you

don't have to change the measure formulas. When this is not

an option, DAX has functions to achieve the same behavior

programmatically.

Lesson 27

Joins with Existing

Relationships

If you're familiar with SQL, you know that it supports various

types of joins to relate and join tables. This lesson recaps

and expands your knowledge of implementing similar joins in

DAX, including inner and outer joins. I recommend you run

the sample DAX queries in \Source\Part6\Joins with Existing

Relationships.dax either using DAX Studio or SQL Server

Management Studio (SSMS) to examine the effect of the

different join operations. If you need help with DAX queries,

review the first lesion in Part 5.

27.1 Implementing Inner Joins

An inner join retains only the column values that result in a

match. Values that don't match, such as years without sales,

are removed from the result.

Table 27.1 lists the DAX functions you can use to implement

inner or outer joins when active or inactive relationships

exist between the joined tables.

Table 27.1 DAX functions for implementing inner and outer joins with

existing relationships.

Function Join Type Function Join Type

SUMMARIZECOLUMNS INNER SUMMARIZE / VALUES OUTER

GROUPBY INNER RELATED / RELATEDTABLE (no

grouping

OUTER

NATURALINNERJOIN (no

grouping)

INNER NATURALLEFTOUTERJOIN (no

grouping)

OUTER

27.1.1 Inner Joins with Grouping

Recall from the lesson "Grouping Data" that the

SUMMARIZECOLUMNS and GROUPBY functions eliminate

column values with no data. Therefore, you can use these

functions to implement inner joins. Run the following query

to return aggregated reseller and Internet sales by calendar

year:

EVALUATE

CALCULATETABLE (

SUMMARIZECOLUMNS (

DimDate[CalendarYear],

"ResellerSales", SUM (FactResellerSales[SalesAmount]),

"InternetSales", SUM (FactInternetSales[SalesAmount])

))

Output

Figure 27.1 SUMMARIZECOLUMNS acts as an inner join and

eliminates years with no data.

Analysis

The SUMMARIZECOLUMNS function groups by

DimDate[CalendarYear] and adds an extended column to

aggregate sales from two tables on the many side of the

relationship. Years without sales are eliminated from the

results (although 2014 doesn't have reseller sales, it has

Internet sales and it's retained). The equivalent SQL query

would be:

select d.CalendarYear, SUM (frs.SalesAmount), SUM (fis.SalesAmount)

from DimDate d inner join FactInternetSales fis on fis.OrderDateKey = d.DateKey

inner join FactResellerSales frs on frs.OrderDateKey = d.DateKey

group by d.CalendarYear

SUMMARIZECOLUMNS also works with inactive relationships.

For example, the following query works without using the

USERELATIONSHIP function although the

DimEmployee[SalesTerritoryKey] ->

DimSalesTerritory[SalesTerritoryKey] relationship is inactive.

EVALUATE

SUMMARIZECOLUMNS (

DimEmployee[FullName],

DimSalesTerritory[SalesTerritoryCountry],

"Sales", SUM (FactResellerSales[SalesAmount])

)

Practice

GROUPBY also acts as an inner join but remember that it

requires an extended "X" function for aggregating data in the

extended columns.

EVALUATE

GROUPBY(FactResellerSales,

DimDate[CalendarYear],

"ResellerSales", SUMX(CURRENTGROUP(), FactResellerSales[SalesAmount])

)

Output

Figure 27.2 GROUPBY also acts as an inner join but only

one table can be aggregated on the many side of the join.

Analysis

Notice that the first argument of GROUPBY is the table on

which the extended column operates. Unlike

SUMMARIZECOLUMNS, GROUPBY is designed to aggregate

data from a single table on the many side of the relationship

by columns from one or more dimension tables on the one

side of the relationship.

27.1.2 Inner Joins Without Grouping

DAX also provides a NATURALINNERJOIN function for joining

tables at the table grain that doesn't requires grouping the

data. You can use this function to join the data first, before

performing other operations on top of the joined data, such

as counting or aggregating the data in measures.

Practice

If you need to join two tables before grouping the results,

you can use the NATURALINNERJOIN function which has the

following syntax: NATURALINNERJOIN (<LeftTable>,

<RightTable>)

EVALUATE

TOPN (

5,

SELECTCOLUMNS (

NATURALINNERJOIN (DimDate, FactResellerSales),

"Date", DimDate[Date],

"SalesAmount", FactResellerSales[SalesAmount]

))

Output

Figure 27.3 NATURALINNERJOIN joins two tables with an

inner join.

Analysis

When there is an active relationship, NATURALINNERJOIN

uses the relationship to qualify rows where the column

values in both tables match. To avoid returning all columns

from both tables, the query uses the SELECTCOLUMNS

function to select only two columns. It also uses the TOPN

function to restrict the output to the first five rows. Notice

that the results are not grouped which conceptually is like

how a SQL join without GROUP BY aggregation would work.

27.2 Implementing Outer Joins

An outer join retains all column values in one of the tables

irrespective if there is a match in the other table. The SQL

language distinguishes between left and right outer join

depending on which side of the join retains all values.

27.2.1 Outer Joins with Grouping

You can use the ADDCOLUMNS/SUMMARIZE pattern or the

VALUES function to implement outer joins and group the

data.

Practice

The following query using the SUMMARIZE function to

simulate a left outer join between Fact Reseller Sales and

DimDate and between FactResellerSalea and DimProduct.

EVALUATE

ADDCOLUMNS (

SUMMARIZE (

FactResellerSales,

DimDate[CalendarYear],

DimProduct[EnglishProductCategoryName]

), "ResellerSales", CALCULATE (SUM (FactResellerSales[SalesAmount])))

Output

Figure 27.4 SUMMARIZE and VALUES retain column values

with no data.

Analysis

Notice that because the query groups sales by year and

product category (two dimensions are involved), the first

argument (base table) passed to the SUMMARIZE function is

the fact table because it's related to both dimensions. The

output represents the aggregated sales, irrespective of if

they have associated years or products (FactResellerSales

doesn't have unrelated rows so no empty column values

show up). Attempting to group on a column that doesn't

have an active relationship to the base table results in the

error "column 'name' specified in the 'SUMMARIZE' function

was not found in the input table".

You can use CALCULATE or CALCULATETABLE to navigate

inactive relationships. For example, this query uses

CALCULATETABLE to navigate the FactReseller Sales

[ShipDateKey] -> DimDate[DateKey] relationship with the

USERELATIONSHIP function

EVALUATE

CALCULATETABLE (

ADDCOLUMNS (

SUMMARIZE (

FactResellerSales,

DimDate[CalendarYear],

DimProduct[EnglishProductCategoryName]

),

"ResellerSales", CALCULATE (SUM (FactResellerSales[SalesAmount]))

) , USERELATIONSHIP (FactResellerSales[ShipDateKey], DimDate[DateKey]))

27.2.2 Outer Joins without Grouping

Like inner joins, there are DAX functions for looking up or

relating data that don't eliminate values if there is no match.

Practice

You can use the RELATED function to look up values from a

table on the one side of the relationship.

EVALUATE

TOPN (5,

SELECTCOLUMNS (

ADDCOLUMNS (FactResellerSales, "Date", RELATED (DimDate[Date])),

"OrderDate", [Date],

"SalesAmount", [SalesAmount]

))

Analysis

This query looks up the value of the DimDate[Date] and

ADDCOLUMNS adds it to Fact Reseller Sales aliased as "Date".

Then, SELECTCOLUMNS return only two columns: Date

aliased as OrderDate and SalesAmount aliased as

SalesAmount.

Practice

When grouping is not required, you can use

NATURALLEFTJOIN to implement a left join.

EVALUATE

TOPN (5,

SELECTCOLUMNS (

NATURALLEFTOUTERJOIN (DimDate, FactResellerSales),

"Date", DimDate[Date],

"SalesAmount", FactResellerSales[SalesAmount]))

Analysis

NATURALLEFTOUTERJOIN returns all values from

DimDate[Date] irrespective of if they have sales or not.

SELECTCOLUMNS returns only the two specified columns

from the results and TOPN filters the first five rows.

27.3 Summary

Although not as feature rich as SQL, DAX has a

comprehensive list of functions that allow you to simulate

left and outer joins over existing relationships. The function

choice depends on whether you want the results to be

grouped and if you want empty values to be eliminated.

Lesson 28

Virtual Relationships

Sometimes, you may need to relate tables that don't have a

physical relationship. A "virtual" relationship is a runtime join

that doesn't use an existing active or inactive relationship.

This lesson reviews different ways to implement virtual

relationships. You'll also learn how to implement more

involved joins, such as cross joins and unions. As with the

previous lesson, I recommend you run the sample DAX

queries in \Source\Part6\Virtual Relationships.dax either

using DAX Studio or SQL Server Management Studio (SSMS)

to see the effect of the different join operations.

28.1 Implementing Virtual

Relationships

You can use the functions shown in Table 28.1 to implement

simple lookups and virtual joins when physical relationships

don't exist.

Table 28.1 DAX functions for joining tables without relationships.

Function Join Type Function Join Type

LOOKUPVALUE OUTER NATURALINNERJOIN INNER

NATURALLEFTOUTERJOIN OUTER INTERSECT INNER

TREATAS OUTER CROSSJOIN INNER (with

filter)

28.1.1 Implementing Virtual Outer Joins

Next, you'll practice the LOOKUPVALUE and

NATURALLEFTOUTERJOIN functions to implement simple

lookups and SQL-style outer joins that retain all values from

one of the tables.

Practice

Previously, I've shown you how to use LOOKUPVALUE to

implement calculated columns. You can also apply this

function to measures, such as when the formula uses an

iterator function.

EVALUATE

TOPN (5,

SELECTCOLUMNS (

ADDCOLUMNS (FactResellerSales, "Date",

LOOKUPVALUE (DimDate[Date], DimDate[Date], FactResellerSales[OrderDate])),

"OrderDate", [Date],

"SalesAmount", [SalesAmount]

))

Analysis

Like the similar example in the previous lesson, this query

returns a table with two columns but it uses the

LOOKUPVALUE function to look up the DimDate[Date] column

that matches the OrderDate column. This works because

ADDCOLUMNS is an iterator that passes the row context to

LOOKUPVALUE.

Practice

You can use the NATURALLEFTOUTERJOIN function for outer

virtual relationships, but the current implementation of the

"natural" functions is very restricted. Microsoft hasn't

implemented these functions as value-based joins but as

dictionary-based joins to deliver the fastest performance.

Therefore, the joined columns not only must have the same

name, but also must have the same data lineage so that

they share the same dictionary.

NOTE Think of the column data lineage as an additional metadata attached to

the column, such as references to the original columns in the data model.

The following query uses NATURALLEFTOUTERJOIN to join

DimDate and Customer base tables in order to calculate the

overall customer count by date.

EVALUATE

GROUPBY (

NATURALLEFTOUTERJOIN (

SELECTCOLUMNS (

DimDate,

"Date", DimDate[Date] + 0,

"CalendarYear", DimDate[CalendarYear]

),

SELECTCOLUMNS (

CustomerBase,

"Date", CustomerBase[MonthJoined] + 0,

"CustomerCount", CustomerBase[CustomerCount]

)

),

[Date],

"CustomerCount", SUMX (CURRENTGROUP (), [CustomerCount]))

Output

Figure 28.1 You can use NATURALLEFTOUTERJOIN to

implement virtual outer joins.

Analysis

Using NATURALLEFTOUTERJOIN requires some preparation.

First, the query wraps both DimDate and CustomerBase

tables with SELECTCOLUMNS so they both have a column

called Date. Notice that when projecting the Date column,

the query uses an expression-based column to calculate a

bogus expression that adds zero to the date. It does this to

remove the data lineage from the column so that both date

columns have an identical (in this case empty) data lineage.

At this point, the query will return all dates from the

DimDate table (with or without customers) which is the

expected result from a left outer join. Lastly, the GROUPBY

function is used to group by the Date column and remove

dates with no data (in order words, to convert the join to an

inner join).

Practice

Suppose you have an app that prompts the user to specify a

subset of customers and as-of dates for each customer. Your

query needs to calculate certain metrics, such as Sales, for

these customers but as of the user-specified date for each

customer. If the tables don't have physical relationships, you

might get the best performance if you use TREATAS, which

has the following syntax:

TREATAS (<Expression>, <ColumnName> [, <ColumnName> [, …]])

The first argument (Expression) is a table-producing

expression that returns columns to be mapped from the

source table followed by the columns in the target table.

Matching is done on column names so the joined columns

must have identical names.

DEFINE

VAR _filter =

DATATABLE (

"Customer Id", STRING,

"Date", DATETIME,

{ { "AW00011000", "1/19/2011" }, { "AW00011001", "1/15/2010" } }

)

EVALUATE

ADDCOLUMNS (

TREATAS (_filter, DimCustomer[CustomerAlternateKey], 'DimDate'[Date]),

"Sales", CALCULATE (SUM (FactInternetSales[SalesAmount])),

"Quantity", CALCULATE (SUM (FactInternetSales[OrderQuantity]))

)

Output

Figure 28.2 Using TREATAS to propagate filters.

Analysis

DAX supports static tables using the DATATABLE function, but

the resulting data table is very limited in features. First, you

can't name the table in your query, so you need to resort to

using a variable. More importantly, many DAX operations

that reference columns, such as attempting to compute MAX

of a table column to get the "current" value, will error with

“Table variable ‘_filter’ cannot be used in current context

because a base table is expected”. You can't create physical

relationships to a custom data table either.

However, you can use TREATAS to establish virtual

relationships based on the input parameters in the data

table. The query has a _filter variable that points to a custom

data table with two customers and corresponding as-of

dates. Then, the query uses TREATAS to evaluate the sales

and order quantity for each customer as of the specified

date. One cautionary note I need to warn you about is that

the cost of such "per-row" virtual relationships could be

expensive.

28.1.2 Implementing Virtual Inner Joins

Virtual inner joins can be implemented with

NATURALINNERJOIN, INTERSECT, and CROSSJOIN.

NATURALINNERJOIN works the same way as

NATURALLEFTOUTERJOIN except that it retains only column

values that match.

Practice

INTERSECT returns column values from one table that match

column values in another table. It has the following syntax:

INTERSECT (<LeftTable>, <RightTable>)

Both arguments must return tables with the same number of

columns that will be joined. You can think of INTERSECT like

EXISTS in SQL. The following query returns the

DimDate[Date] and DimDate[CalendarQuarter] columns only

for the dates that exist in the CustomerBase[MonthJoined]

column.

EVALUATE

CALCULATETABLE (

SELECTCOLUMNS(DimDate, "Date", DimDate[Date], "Year",

DimDate[CalendarYear]),

INTERSECT (

ALL(DimDate[Date]),

VALUES(CustomerBase[MonthJoined])

))

Output

Figure 28.3 Using INTERCEPT to implement SQL-like EXISTS

joins.

Analysis

The query uses the INTERSECT function to find a subset of

the DimDate[Date] column values that match

Customer[MonthJoined]. Instead of ALL, you can use

VALUES(DimDate[Date]), but you may still need ALL to

ignore the filter context if the first column comes from a fact

table.

To finish with INTERSECT, another DAX function EXCEPT

works in the same way but returns only rows from the left-

side table that are not in the right-side table.

28.2 Implementing Other Joins

DAX has a few more functions for working with joins that

deserve attention. They allow you to cross join, merge, and

generate tables.

28.2.1 Implementing Cross Joins

The CROSSJOIN function returns all the combinations (a cross

join) between two or more tables, and it has this syntax:

CROSSJOIN (<Table> [, <Table> [, …]])

Together with FILTER, CROSSJOIN can be used to implement

a virtual inner join.

Practice

The following query returns the same results as the

INTERSECT query:

EVALUATE

CALCULATETABLE (

SELECTCOLUMNS (DimDate, "Date", DimDate[Date], "Year",

DimDate[CalendarYear]),

FILTER (

CROSSJOIN (ALL (DimDate[Date]), VALUES (CustomerBase[MonthJoined])),

DimDate[Date] = CustomerBase[MonthJoined]

))

Analysis

The CROSSJOIN function returns all combinations between

the DimDate[Date] and CustomerBase [MonthJoined]

columns. Then, the FILTER function limits the results to only

values where the two dates match.

28.2.2 Merging Tables

The DAX UNION function can fulfill a similar role as the SQL

UNION ALL function. It returns the union of the two or more

tables whose columns match. UNION has the following

syntax:

UNION (<Table> [, <Table> [, …]])

Practice

The following query appends selected columns from

FactInternetSales and FactResellerSales and then computes

the sum of sales by source.

EVALUATE

GROUPBY (

UNION (

SELECTCOLUMNS (

FactInternetSales, "Source", "Internet", "Date", FactInternetSales[OrderDate],

"ProductKey", FactInternetSales[ProductKey], "Sales",

FactInternetSales[SalesAmount]

),

SELECTCOLUMNS (

FactResellerSales, "Source", "Resale", "Date", FactResellerSales[OrderDate],

"ProductKey", FactResellerSales[ProductKey], "Sales",

FactResellerSales[SalesAmount]

)

),

[Source]

,"TotalSales", SUMX (CURRENTGROUP (), [Sales]))

Output

Figure 28.4 UNION combines columns from the

FactInternetSales and FactResellerSales tables.

Analysis

This query combines column values ("rows") from the two

fact tables. It adds a column "Source" to indicate the source

table. Then, it uses GROUPBY to group the Source column

and sum sales.

28.2.3 Generating Tables

Like CROSSJOIN, the GENERATE function cross joins two

tables, but it also evaluates the right-side table in the

context of each row in the left-side table.

Practice

Suppose you have a list of dates and for each date you want

to get the orders that are open as of that date. The following

query does this (to avoid many rows, it returns only the first

10 orders).

EVALUATE

TOPN (10,

SELECTCOLUMNS (

GENERATE (

FactInternetSales,

FILTER (DimDate,

AND (DimDate[Date] >= FactInternetSales[OrderDate], DimDate[Date] <=

FactInternetSales[ShipDate])

)

),

"Date", DimDate[Date],

"Order Number", FactInternetSales[SalesOrderNumber]

))

Output

Figure 28.5 Using GENERATE to return a list of orders that

are open as of each date in a list of dates.

Analysis

The query passes FactInternetSales as the first argument of

the GENERATE function and a filtered list of DimDate that

contains only the dates where the date is between the order

date and ship date. This works because when GENERATE

iterates each row in FactInternetSales, it passes the row

context to the second table. As a result, only the sales orders

that are open as of that date are filtered. Another DAX

function GENERATEALL, can be used as a left join to retain

rows from the right-side table if the evaluated expression

results in an empty value.

28.3 Summary

For best performance, you should always create physical

(active or inactive) relationships. Power BI maintains internal

structures and indexes to optimize joins over physical

relationships. However, the model complexity might

sometimes preclude physical relationships. In this case, you

can use the DAX functions discussed in this lesson to

implement virtual joins, ranging from looking up values to

more complicated joins.

Lesson 29

Applying Data Security

Do you have a requirement to allow certain users (internal or

external) to see only a subset of data that they're authorized

to access? For example, as a model author you have access

to all the data you imported. However, when you publish the

model to Power BI Service, you want other users to see only

sales for a specific geography. Or, you might want to restrict

external partners to access only their data in a multi-tenant

model that you published to powerbi.com. This is where the

Power BI data security (also known as row-level security or

RLS) can help, and this lesson shows you how.

29.1 Understanding Data Security

Data security is supported for models that import data and

that connect live to data, except when connecting live to

Analysis Services, which has its own security model. At a

high level, implementing data security is a two-step process:

 Modeling step – This involves defining roles and table

filters inside the model to restrict access to data. Table

filters are implemented as DAX formulas.

 Operational step – Once the security roles are defined, you

need to publish the model to Power BI Service to assign

members to roles. Configuring membership is the

operational aspect of RLS that needs to be done in Power

BI Service (powerbi.com).

It's important to understand that data security is only

enforced in Power BI Service, that is when the model is

published and shared with other users who have view-only

rights (they don't have Admin or Edit Content permissions to

a workspace) to shared content. Such users won't be able to

access any data unless they are assigned to a role. However,

if you share the Power BI Desktop file with another user and

he opens it in Power BI Desktop, data security is not

enforced.

29.1.1 Understanding Roles

Setting up data security requires implementing roles and

table filters. A role allows you to grant other users restricted

access to data in a secured model. A table filter limits the

data the user can see in a table and its related tables.

Setting up roles

Figure 29.1 is meant to help you visualize a role. In a

nutshell, a role gives its members permissions to view the

model data. To create a new role, click the Manage Roles

button in the ribbon's Modeling tab. Then, click the Create

button in the "Manage roles" window and name the role. As I

mentioned, after you deploy the model to Power BI Service,

you must assign members to the role. You can type in email

addresses of individual users, security groups, and

workspace groups.

Figure 29.1 A role grants its members permissions to a

table, and it optionally restricts access to table rows.

Understanding role additivity

Roles are additive. If a user belongs to multiple roles, the

user will get the superset of all the role permissions. For

example, suppose the user is a member of both the Sales

Representative and Marketing roles. The Sales

Representative role grants him rights to United States, while

the Marketing role grants him access to all countries.

Because roles are additive, he can see data for all countries.

TIP As it stands, Power BI doesn’t support object security to hide entire tables.

Even if the table filter qualifies no rows, the table will show in the model

metadata. The simplest way to disallow a role from viewing any rows in a table is

to set up a table filter that returns FALSE(). If no table filter is applied to a table,

TRUE() is assumed and the user can see all of its data.

29.1.2 Understanding Table Filters

By default, a role can access all the data in all tables in the

model. However, the whole purpose of implementing data

security is to limit access to a subset of data, such as to

allow some users to see only sales for the United States. This

is achieved by specifying one or more table filters. As its

name suggests, a table filter defines a filter expression that

evaluates which table rows the role can see. To set up a row

filter in Role Manager, enter a DAX formula next to the table

name.

Understanding filter formulas

The DAX formula must evaluate to a Boolean condition that

returns TRUE or FALSE. For example, when the user connects

to the published model and the user is a member of the role,

Power BI applies the row filter expression to each row in the

DimSalesTerritory table. If the row meets the criteria, the role

is authorized to see that row. For example, Figure 29.2

shows that the "US" role applies a row filter to the

SalesTerritory table to return only rows where the

SalesTerritoryCountry column equals "United States".

How table filters affect related tables

From an end-user perspective, rows the user isn't authorized

to view and their related data in tables on the many side of

the relationship simply don't exist in the model. Imagine that

a global WHERE clause is applied to the model that selects

only the data that's related to the allowed rows of all the

secured tables.

Given the US role setup shown in Figure 29.2, the user

can't see any other sales territories in the DimSalesTerritory

table except "United States". Moreover, because of the

DimSalesTerritory -> FactResellerSales filter direction, the

user can't see sales for these territories in the

FactResellerSales table or in any other tables that are

directly or indirectly (via cascading relationships) related to

the DimSalesTerritory table if the filter direction points to

these tables. In other words, Power BI propagates data

security to related tables following the filter direction of the

existing relationships.

Figure 29.2 This table filter grants the US role access to

rows where SalesTerritory Country is United States.

What about other dimension tables, such as DimReseller?

Should the user see only resellers with sales in the United

States? Again, the outcome depends on the relationship

cross-filter direction. If it's Single (there is a single arrow

pointing from DimReseller to FactResellerSales), the security

filter is not propagated to the DimReseller table and the user

can see all resellers. To clarify, the user can see the list of all

resellers, but he can see only sales for the US resellers

because sales come from the filtered ResellerSales table.

However, if the relationship cross-filter direction is Both (a

bidirectional relationship) and the "Apply security filter in

both directions" setting on the relationship properties is

checked, then data security propagates to DimReseller table

and the user can see only resellers with sales in the United

States.

29.2 Implementing Basic Data

Security

In the exercise that follows, you'll add a role that allows the

user to view only sales in the United States. Then, I'll show

you how to test the role on the desktop and how to add

members to the role after you deploy your model to Power BI

Service.

29.2.1 Changing the Model

Remember that setting up the security role and table filters

are done in the Power BI Desktop.

Practice

Start by creating a new role in the Adventure Works model.

1.In the ribbon's Modeling tab, click the Manage Roles button.

2.In the Manage Roles window, click the Create button.

Rename the new role to US.

3.Click the ellipsis button next to the DimSalesTerritory table,

and then click "Add filter…" -> [SalesTerritory Country] to

filter the values in this column.

4.Change the "Table Filter DAX Expression" content with the

following formula:

[SalesTerritoryCountry] = "United States"

5.Click Save.

TIP Consider adding an Open Access role that doesn't have any table filter. This

role is for users who need full access to data. Recall that by default a role has

unrestricted access unless you define a table filter.

Output

You don't have to deploy the model to Power BI Service to

test the role. Power BI Desktop lets you do this conveniently

on the desktop. This allows you to test the role as though

you're a user who is a member of the role.

1.In the ribbon's Modeling tab, click the "View as Roles"

button.

2.In the "View as roles" window, check the US role. Click OK.

3.You should see a status bar showing "Now viewing report

as: US". Create a report that includes the

SalesTerritoryCountry column from the DimSalesTerritory

table, such as the one shown in Figure 29.3. The report

should show only data for US.

Figure 29.3 The report shows only data for United States.

4.(Optional) Add a Table visualization showing the

ResellerName column from the DimReseller table. You should

see all resellers. However, if you add a measure from the

FactResellerSales table, you should see only resellers with

sales in the US. If you want to prevent the role from seeing

non-US resellers, change the cross-filter direction of the

FactResellerSales[ResellerKey] -> DimReseller[ResellerKey]

relationship to Both.

Analysis

When you browse the data as a member of the US role, you

can see only United States in DimSalesTerritory. Moreover,

you can see only sales transactions associated with this

country. Data security automatically propagates to all fact

tables related to the secured dimension table. It's also

possible to propagate data security to dimension tables.

29.2.2 Defining Role Membership

Now that the role is defined, it becomes a part of the model,

but its setup is not complete yet. Next, you'll deploy the

model to Power BI Service and add members to the role.

Practice

Let's deploy the Adventure Works model to powerbi.com to

finalize the security setup.

1.In the ribbon's Home tab, click Publish. If prompted, log in

to Power BI and deploy the Adventure Works model to My

Workspace.

2.Open your browser and navigate to Power BI Service

(powerbi.com). Click My Workspace.

3.In the workspace content page, click the Datasets tab. Click

the ellipsis button next to the Adventure Works dataset, and

then click Security from the drop-down menu.

Figure 29.4 You set up the role membership in Power BI

Service.

4.In the "Row-Level Security" window, add the emails of

individuals or groups who you want to add to the role

(Figure 29.4). You can also add external users that you

have previously shared content with as members to the role.

Click Save.

Output

It's always a good idea to check data security with other

users to ensure it works.

1.Create a report that uses visualizations from the Adventure

Works report and share it with users who belong and don't

belong to the role (you and the recipients must have Power

BI Pro or Power BI Premium subscriptions). Ask them to view

the dashboard and report their results.

2.(Optional) Republish the Adventure Works model. Power BI

Desktop will ask you to replace the dataset. In Power BI

Service, go to the Adventure Works dataset security settings

and notice that the role membership is preserved. That's

because the role membership is external to the Adventure

Works model and republishing the file doesn't overwrite it.

However, if you delete the dataset in Power BI Service, you'll

lose its role membership.

NOTE As a model author, you always have admin rights to model so don't be

surprised that you see all the data irrespective of your role membership. If you

publish the model to a workspace, the workspace administrators and members

who can edit content also gain unlimited access.

Analysis

Once data security is enabled, users can't see the model

data by default. Although the user has rights to run the

report, data security will prevent the user to see any data

unless the user is a member of the security role that grants

the user data access.

29.3 Summary

Power BI has various security checks to ensure that the user

is authorized to view reports and dashboards. Row-level

security (RLS) is the most granular because it restricts the

user to see a subset of the model data. You use DAX

formulas to define table filters at design time and add role

members in Power BI Service.

Lesson 30

Implementing Dynamic

Security

The row filter in the previous lesson returns a fixed (static)

set of allowed rows. This works well if you have a finite set of

unique permissions. For example, if there are three regions,

you can build three roles. Static filters are simple to

implement and work well when the number of roles is

relatively small. However, suppose you must restrict

managers to view only the sales data of the employees that

are reporting directly or indirectly to them. If static filters

were the only option, you'd have no choice except to set up

a database role for each manager. This might lead to a huge

number of roles and maintenance issues. Therefore, Power BI

supports dynamic data security. You'll find the DAX formulas

for this lesson in \Source\Part6\Implementing Dynamic

Security.dax.

30.1 Understanding Dynamic Data

Security

Dynamic security relies on the identity of the interactive user

to filter data. For example, if I log in to Power BI as

teo.lachev@adventure-works.com, a role can filter the

Employee table to me and my subordinates. Instead of

creating a role per user, you need only a single role with the

following table filter applied to the Employee table:

PATHCONTAINS(DimEmployee[Path],

LOOKUPVALUE(DimEmployee[EmployeeKey], DimEmployee[EmailAddress],

USERPRINCIPALNAME()))

30.1.1 Authenticating the Interactive User

The cornerstone of dynamic data security is obtaining the

identity of the interactive user and applying security policies

based on that identity.

Obtaining the user identity

The above formula uses the USERPRINCIPALNAME() DAX

function (specifically added to support Power BI) which

returns the user principal name (UPN) in both Power BI

Service and Power BI. If you have set up dynamic security

with Analysis Services Multidimensional or Tabular, you have

probably used the USERNAME() function. However, this

function returns the user domain login in Power BI Desktop

(see Figure 30.1). You can use the WhoAmI.pbix Power BI

Desktop file in the \Source\Part6 folder to verify the results.

Figure 30.1 USERPRINCIPALNAME() and USERNAME() return

different results in Power BI Desktop.

mailto:teo.lachev@adventure-works.com

To avoid using an OR filter to support both Power BI and

Power BI Desktop, use USERPRINCIPALNAME() but make sure

that the EmailAddress column stores the user principal name

(typically but not always UPN corresponds to the user's email

address) and not the user's Windows login (domain\login).

Authorizing access

To explain the rest of the filter, the DAX expression uses the

LOOKUPVALUE function to retrieve the value of the

EmployeeKey column that's matching the user's login. Then,

it uses the PATHCONTAINS function to parse the Path column

in the Employee table in order to check if the parent-child

path includes the employee key. If this is the case, the user is

authorized to see that employee and his associated sales

because the user is the employee's direct or indirect

manager.

NOTE If your computer is not joined to a domain, both USERPRINCIPALNAME()

and USERNAME() would return your login (NetBIOS name) in the format

MachineName\Login in Power BI Desktop. In this case, you'd have to use an OR

filter so that you can test dynamic security in both Power BI Service and Power BI

Desktop.

30.1.2 Implementing Organizational Security

I'll walk you through the steps required to implement

dynamic data security for the manager-subordinate scenario

we just reviewed.

Practice

Start by creating a new role that filters the DimEmployee

table.

5.In the ribbon's Modeling tab, click Manage Roles.

6.In the "Manage roles" window create a new Employee role.

7.In the Table section, select the Employee table. Enter the

following expression in the "Table Filter DAX Expression" field

(recall that you implemented the Path column in the

"Recursive Relationships" lesson):

PATHCONTAINS(DimEmployee[Path],

LOOKUPVALUE(DimEmployee[EmployeeKey], DimEmployee[EmailAddress],

USERPRINCIPALNAME()))

8.Click the checkmark button in the top right corner of the

window to check the expression syntax. If there are no

errors, click Save to create the role.

Output

Now that the Employee role is in place, let's make sure it

works as expected.

1.In the ribbon's Modeling tab, click "View As Roles" (see

Figure 30.2).

Figure 30.2 The "View as roles" window lets you test

specific roles and impersonate users.

2.In the "View as roles" window, check the "Other user"

checkbox and type in stephen0@adventure-works.com to

impersonate this user. As a result, USERPRINCIPALNAME()

returns Stephen's login.

3.Check the Employee role to test it as though Stephen is a

member of the role. Click OK.

4.(Optional) Create a Matrix report that uses the Employees

hierarchy (or Level1-Level6 fields) and the

DimEmployee[Sales Amount (h)] measure you implemented

in the "Recursive Relationships" lesson, as shown in Figure

30.3.

mailto:stephen0@adventure-works.com

Figure 30.3 This report shows only Stephen Jiang and his

direct or indirect subordinates.

Analysis

The report lets you access only Stephen Jiang and his direct

or indirect subordinates. When you run the report, Power BI

normally obtains the identity of the interactive user, but you

overwrote it with Stephen's login. The DAX formula in the

Employee role applies a filter to DimEmployee to filter only

Stephen and his subordinates. Notice that the report also

shows Stephen's direct and indirect managers (otherwise,

there won't be a way to drill down to Stephen), but their

totals are filtered to include only Stephen's team

contribution.

30.2 Externalizing Security Policies

The final progression of data security is externalizing security

policies in another table. Suppose that Adventure Works uses

a master data management application, such as Master Data

Services (MDS), to associate a sales representative with a set

of resellers that she oversees. Your task is to enforce a

security role that restricts the user to see only her resellers.

This would require importing a table that contains the

employee-reseller associations.

REAL LIFE This approach builds upon the factless fact table implementation that

I demonstrated in my "Protect UDM with Dimension Data Security, Part 2" article

(http://bit.ly/YBcu1d). I've used this approach in real-life projects because of its

simplicity, performance, and ability to reuse the security filters across other

applications, such as across operational reports that source data directly from the

data warehouse.

30.2.1 Implementing a Security Policy Table

A new SecurityFilter table is required to store the authorized

resellers for each employee

(see Figure 30.4). This table is related to the Reseller and

Employee tables. If an employee is authorized to view a

reseller, a row is added to the SecurityFilter table. In real life,

business users or IT pros will probably maintain the security

associations in a database or external application.

Figure 30.4 The Security Filter bridge table stores the

authorized resellers for each employee.

Importing the security policy table

For the sake of simplicity, you'll import the security policies

from a text file (you can also enter the data directly using

the Enter Data button in the ribbon's Home tab).

1.In the ribbon's Home tab, click Get Data. Choose Text/CSV.

2.Navigate to the \Source\Part6 folder and select the

SecurityFilter.csv file. Click Open.

5.Preview the data and compare your results with Figure

30.5. Click Load. Power BI Desktop adds a Security Filter

table to the model.

Figure 30.5 The Security Filter file includes the allowed

resellers that an employee can access.

6.Because users shouldn't see this table, right-click the

SecurityFilter table in the Fields pane (Data View) and click

"Hide in Report View".

Creating relationships

Next, relate the SecurityFilter table to the appropriate

dimensions.

1.In the Relationships View, double-click the

FactResellerSales[ResellerKey] ->DimReseller[ResellerKey]

relationship. If the "Apply security filter in both directions"

checkbox is checked, uncheck it because it will conflict with

the new relationships.

2.In the Relationships View, verify that the

SecurityFilter[EmployeeKey] ->DimEmployee[EmployeeKey]

and SecurityFilter[ResellerKey] ->DimReseller[ResellerKey]

relationships exist and that they are active. If that's not the

case, make the necessary changes to create these two

relationships.

REAL LIFE Although in this case the SecurityFilter table is related to other tables,

this is not a requirement. DAX is flexible and it allows you to filter tables using

the FILTER function even if they can't be related. For example, a real-life project

required defining application security roles and granting them access to any level

in an organization hierarchy. The DAX row filter granted the role access to a

parent without explicit access to its children. The security table didn't have

relationships to the fact table.

30.2.2 Implementing External Security

Now that the security policy table is in place, the next step is

to implement the role and set up a table filter that will

authorize the user to see only the permitted resellers.

Practice

Next, you'll add a role that will enforce the security policy.

Follow these steps to set up a new Reseller role:

1.In the ribbon's Modeling tab, click Manage Roles.

2.In the "Manage roles" window create a new Reseller role.

3.In the Table section, select the DimReseller table.

4.Enter the following expression in the "Table Filter DAX

Expression" field:

CONTAINS(RELATEDTABLE(SecurityFilter), SecurityFilter[EmployeeKey],

LOOKUPVALUE(DimEmployee[EmployeeKey], DimEmployee[EmailAddress],

USERPRINCIPALNAME()))

Output

Let's follow familiar steps to test the role:

1.In the ribbon's Modeling tab, click "View As Roles". In the

"View as roles" window, check the "Other user" option and

enter stephen0@adventure-works.com as before.

mailto:stephen0@adventure-works.com

2.Check the Reseller role and click OK.

3.Create a Table report that uses the ResellerName field from

the Reseller table. The report should show only the three

resellers associated with Stephen.

4.(Optional) In the Home ribbon, click the Publish button.

Deploy the Adventure Works model to Power BI Service. Add

members to the Employee and Reseller roles. Ask the role

members to view reports and report results.

Analysis

Examining the table filter formula, the LOOKUPVALUE

function is used to obtain the employee key associated with

the email address. Because the table filter is set on the

Reseller table, for each reseller, the CONTAINS function

attempts to find a match for that reseller key and employee

key combination in the SecurityFilter table. Notice the use of

the RELATEDTABLE function to pass the current reseller. The

net effect is that the CONTAINS function returns TRUE if there

is a row in the SecurityFilter table that matches the

ResellerKey and EmployeeKey combination.

30.3 Summary

Power BI supports flexible data security that can address

various security requirements, ranging from simple filters,

such as users accessing specific countries, to externalizing

security policies and dynamic security based on the user's

identity. The cornerstone of dynamic security is obtaining the

user identity by using the USERPRINCIPALNAME function. You

define security roles and table filters in Power BI Desktop and

role membership in Power BI Service (powerbi.com).

Term Acronym Description

Analysis Services Tabular An instance of SQL Server Analysis Services that's configured

in Tabular mode to host Power BI models and organizational

semantic models.

Analysis Services

Multidimensional

 An instance of SQL Server Analysis Services that's configured

in Multidimensional mode to host Power BI models and

organizational semantic models (OLAP cubes).

Business Intelligence

Semantic Model

BISM A unifying name that includes both Multidimensional (OLAP)

and Tabular (relational) features of Microsoft SQL Server

Analysis Services.

Calculated column A DAX expression-based column added to a table in the data

model.

Calculated table A table that is produced with a DAX expression.

Composite model A data model with hybrid (import and DirectQuery) storage.

Cube An OLAP structure organized in a way that facilitates data

aggregation, such as to answer queries for historical and

trend analysis.

Data Analysis Expressions DAX An Excel-like formula language for defining custom

calculations and for querying tabular models.

Data model A BI model designed with Power BI Desktop or Analysis

Services.

Data security Implemented as DAX row filters, data security restricts access

to data in the model.

Dataset The definition of the data that you connect to in Power BI,

such as a dataset that represents the data you import from an

Excel file.

Date table A table that stores a consecutive range of dates to fulfill the

role of a Date dimension table.

DAX Studio A community tool for working with DAX queries

(https://daxstudio.org)

DirectQuery A data connectivity configuration that allows Power BI to

generate and send queries to the data source without

importing the data.

Dimension (lookup) table A table that represents a business subject area and provides

contextual information to each row in a related fact table,

such as Product, Customer, and Date.

Appendix A

Glossary of Terms

The following table lists the most common terms and

acronyms used in this book.

https://daxstudio.org/

Term Acronym Description

Extraction, transformation,

loading

ETL Processes extract from data sources, clean the data, and load

the data into a target database, such as data warehouse.

Explicit measure A DAX measure that you create by entering a DAX formula.

Implicit measure A DAX measure that is created automatically when you add a

field to the visual's Values area.

Fact table A table that keeps a historical record of numeric

measurements (facts), such as the

FactResellerSales table in the Adventure Works model.

Filter context Typically used by measures, represents the scope in which the

measure formula is executed.

Key Performance Indicator KPI A key performance indicator (KPI) is a quantifiable measure

that is used to measure the company performance, such as

Profit or Return on Investment (ROI).

M The expression-based language of Power Query

Measure A business calculation that is typically used to aggregate

data, such as SalesAmount, Tax, and Order Quantity.

Multidimensional The OLAP path of BISM that allows BI professionals to

implement multidimensional cubes.

Multidimensional Expressions MDX A query language for Multidimensional for defining custom

calculations and querying OLAP cubes.

Online Analytical Processing OLAP A system that is designed to quickly answer multidimensional

analytical queries to facilitate data exploration and data

mining.

Paginated report A standard, paper-oriented report that is one of the report

types supported by SSRS

Power BI A data analytics platform for self-service, team, and

organizational BI that consists of Power BI Service, Power BI

Desktop, Power BI Premium, Power BI Mobile, Power BI

Embedded, and Power BI Report Server products.

Power BI Desktop A free desktop tool for creating Power BI reports and self-

service data models.

Power BI Premium A Power BI Service add-on that allows organizations to

purchase a dedicated environment.

Power BI Report Server An extended edition of SSRS that supports paginated reports,

Power BI reports and Excel reports.

Power BI Service The cloud-based service of Power BI (powerbi.com). The terms

Power BI and Power BI Service are used interchangeably.

Power Pivot for Excel A free add-in that extends the Excel capabilities to allow

business users to implement personal BI models.

Power Pivot for SharePoint Included in SQL Server 2012, PowerPivot for SharePoint

extends the SharePoint capabilities to support PowerPivot

models.

Power Query A layer in Power BI Desktop and Excel for transforming and

shaping data on which a data model is implemented.

Query A DAX query allows external clients to query published data

models.

Quick measure A DAX measure that is implemented with a Power BI

prepackaged formula.

Relationship A physical or virtual join between two tables

Row context Typically used in calculated columns, represents the "current"

row.

Term Acronym Description

Row-level Security RLS A security mechanism for ensuring restricted access to data.

Self-service BI Same as Personal BI.

Semantic model Layered between the data and users, the semantic model

translates database structures into a user-friendly model that

centralizes business calculations and security.

SQL Server Analysis Services SSAS A SQL Server add-on, Analysis Services provides analytical

and data mining services. The Business Intelligence Semantic

Model represents the analytical services.

SQL Server Integration

Services

SSIS A SQL Server add-on, Integration Services is a platform for

implementing extraction, transformation, and loading (ETL)

processes.

SQL Server Management

Studio

SSMS A management tool that's bundled with SQL Server that

allows administrators to manage Database Engine, Analysis

Services, Reporting Services and Integration Services

instances.

SQL Server Reporting

Services

SSRS A SQL Server add-on, Reporting Services is a server-based

reporting platform for the creation, management, and delivery

of standard and ad hoc reports.

Snowflake schema Unlike a star schema, a snowflake schema has some

dimension tables that relate to other dimension tables and

not directly to the fact table.

Star schema A model schema where a fact table is surrounded by

dimension tables and these dimension tables reference

directly the fact table.

Tabular Tabular is the second implementation path in Analysis

Services that lets BI pros implement relational-like (tabular)

semantic models.

Time intelligence Type of analytics to analyze the data by time.

Variable A DAX construct for refactoring certain parts of a formula to

improve readability and performance.

Vertipaq Analyzer A community tool for analyzing the model storage.

xVelocity xVelocity is a columnar data engine that compresses and

stores data in memory.

Increase your BI IQ!

Prologika offers consulting, implementation and training

services that deliver immediate results and great ROI. Check

our services, case studies, and training catalog at

https://prologika.com and contact us today to improve and

modernize your data analytics at info@prologika.com.

Currently, we offer these training courses that we can deliver

onsite or remotely. Learn more at

https://prologika.com/training/.

https://prologika.com/
https://prologika.com/training/

