MICROSOFT DATA ANALYTICS

APPLIED DAX

WITH POWER BI

FROM ZERO TO HERO
WITH 15-MINUTE LESSONS

DAX

Teo Lachev

Microsoft Data Analytics

D

Kdl

k—

Applied DAX with
Power Bl

From zero to hero with
15-minute lessons

Teo Lachev

Applied DAX with Power BI

From zero to hero with 15-minute lessons

Published by:
Prologika Press
info@prologika.com
https://prologika.com

Copyright © 2019 Teo Lachev
Made in USA

All rights reserved. No part of this book may be reproduced, stored, or
transmitted in any form or by any means, without the prior written
permission of the publisher. Requests for permission should be sent to
info@prologika.com.

Trademark names may appear in this publication. Rather than use a
trademark symbol with every occurrence of a trademarked name, the
names are used strictly in an editorial manner, with no intention of
trademark infringement. The author has made all endeavors to adhere to
trademark conventions for all companies and products that appear in this
book, however, he does not guarantee the accuracy of this information.

The author has made every effort during the writing of this book to ensure
accuracy of the material. However, this book only expresses the author's
views and opinions. The information contained in this book is provided
without warranty, either express or implied. The author, resellers or
distributors, shall not be held liable for any damages caused or alleged to
be caused either directly or indirectly by this book.

ISBN 13: 978-1-7330461-0-7
ISBN 10: 1-7330461-0-0

Author: Teo Lachev

Technical reviewer: John Layden
Cover designer: Zamir Creations
Copyeditor: Maya Lachev

The manuscript of this book was prepared using Microsoft Word.
Screenshots were captured using
TechSmith Snagit.

contents

PART 1 INTRODUCTION

LESSON 1 INTRODUCING DAX

LESSON 2 EXPLORING THE MODEL

LESSON 3 UNDERSTANDING STORAGE
LESSON 4 UNDERSTANDING CUSTOM COLUMNS
LESSON 5 RELATING DATA

LESSON 6 AGGREGATING DATA

LESSON 7 FILTERING DATA

LESSON 8 GROUPING AND BINNING VALUES
LESSON 9 IMPLEMENTING CALCULATED TABLES
PART 3 MEASURES

LESSON 10 UNDERSTANDING MEASURES
LESSON 11 CREATING BASIC MEASURES
LESSON 12 DETERMINING FILTER CONTEXT
LESSON 13 WORKING WITH VARIABLES
LESSON 14 CHANGING FILTER CONTEXT
LESSON 15 GROUPING DATA

PART 4 TIME INTELLIGENCE

LESSON 16 WORKING WITH DATE TABLES
LESSON 17 QUICK TIME INTELLIGENCE
LESSON 18 CUSTOM TIME INTELLIGENCE
LESSON 19 SEMI-ADDITIVE MEASURES
LESSON 20 CENTRALIZING TIME INTELLIGENCE
PART 5 QUERIES

LESSON 21 INTRODUCING DAX QUERIES
LESSON 22 CREATING AND TESTING MEASURES
LESSON 23 OPTIMIZING QUERY PERFORMANCE
LESSON 24 USING POWER Bl REPORT BUILDER
PART 6 ADVANCED DAX

LESSON 25 RECURSIVE RELATIONSHIPS
LESSON 26 MANY-TO-MANY RELATIONSHIPS
LESSON 27 JOINS WITH EXISTING RELATIONSHIPS
LESSON 28 VIRTUAL RELATIONSHIPS

LESSON 29 APPLYING DATA SECURITY

LESSON 30 IMPLEMENTING DYNAMIC SECURITY
GLOSSARY OF TERMS

preface

DAX is growing in popularity thanks to the momentum
surrounding Microsoft Power Bl, Excel Power Pivot, and
Analysis Services Tabular. Whether you are a business
analyst or a Bl pro, a good working knowledge of DAX is
important for extending your models with custom business
logic. You won't get far in Microsoft Bl without DAX.

This book was born out of necessity and I've been working on
it for a while. In my consulting practice, | had been teaching
and implementing Power Bl and Analysis Services Tabular,
and people were constantly asking for DAX book
recommendations. Indeed, DAX is not an easy topic and has
its ways to humble even experienced practitioners. There are
a few good reference books out there, but they could be
somewhat overwhelming for novice users. So, | turned my
classroom and consulting experience into this book and
designed it as a self-paced guide to help you learn DAX one
lesson at a time.

As its name suggests, the main objective of this book is to
teach you the practical skills of how to take the most of DAX
from whatever angle you'd like to approach it. You'll learn
DAX methodically with self-paced lessons that progress from
simple topics, such as calculated columns, to more advanced
areas, such as time intelligence, joins, and security. Most
lessons are five to six pages long, and it should take no more
than 15 minutes to complete the lesson's exercises. And if
you do one lesson per day, you'll be a DAX expert in a
month!

With the growing popularity of Power Bl, | decided to use this
technology for the exercises. However, although this book
teaches you DAX with Power B, a nice bonus awaits you
ahead because you're also learning how to program Excel

Power Pivot and Analysis Services Tabular. So, if one day you
find yourself working on a self-service model in Excel or an
organizational model powered by Analysis Services Tabular,
you'll find that you already have the knowledge.

Although this book is designed as a comprehensive guide to
DAX, it's likely that you might have questions or comments.
As with my previous books, I'm committed to help my
readers with book-related questions and welcome all
feedback on the book discussion forums on my company's
web site (https://prologika.com/daxbook). Consider also
following my blog at https://prologika.com/blog and
subscribing to my newsletter at https://prologika.com to stay
on the Microsoft Bl latest.

Now, turn to the first lesson and get from zero to DAX hero at
your own pace!

Teo Lachev
Atlanta, GA

https://prologika.com/dax
https://prologika.com/blog
https://prologika.com/

about the book

The book doesn't require any prior experience with DAX, but
it assumes that you have experience in Power Bl data
modeling. If you don't, | recommend you start with my
"Applied Microsoft Power BI" book, which teaches you how to
create self-service data models. To get the most out of this
book, read and practice the lessons in the order they appear
in the book. That's because each lesson builds upon the
previous ones, to introduce new concepts and reinforce them
with step-by-step exercises.

Part 1, /Introduction, starts with the fundamentals. It
introduces you to the DAX origin and main constructs. You'll
learn important data modeling techniques, including star
schemas and relationships. You'll also learn about the Power
Bl storage engine and how storage affects DAX.

Part 2, Calculated Columns and Tables, teaches you to
extend your tables with basic and advanced calculated
columns, including columns for looking up, aggregating, and
filtering data. You'll understand how calculated columns are
evaluated and how to change the evaluation context. And
you'll discover how calculated tables can help you implement
role-playing dimensions, date tables, and summarized tables.

Part 3, Measures, explains how measures give you the
needed programmatic power to travel the "last mile" and
unlock the full potential of Power Bl. After learning the
measure fundamentals and filter context, it shows you how
to create basic measures. Then, it moves to more advanced
concepts, such as restricting and ignoring the filter context,
as well as grouping and filtering data.

Part 4, Time Intelligence, further expands your knowledge
of measures and teaches you how to implement time
intelligence. It starts by teaching you how to work with built-
in and custom date tables. After revisiting quick measures for

time intelligence, it teaches you how to implement custom
formulas for more advanced requirements, such as custom
date filters and semi-additive measures. You'll learn how to
centralize time intelligence formulas by using calculation
groups.

Part 5, Queries, covers creating custom queries to test
measures outside Power Bl Desktop, exploring the model
data, and implementing reports with other tools that require
you to specify a dataset query, such as Power Bl Report
Builder. You'll also discover how to identify and address
performance bottlenecks.

Part 6, Advanced DAX, starts by showing you how you can
use DAX to implement different types of joins, including
recursive (parent-child), many-to-many, inner, outer, and
other joins. It explains how to implement row-level security
(RLS) by applying DAX row filters. You'll also learn how to
handle more complicated security policies, such as by
externalizing secured policies in a separate table.

acknowledgements

Welcome to the Applied DAX with Power Bl book! Writing
books is difficult and DAX doesn't make it any easier.
Fortunately, | had people who supported me. This book (my
eleventh) would not have been a reality without the help of
many people to whom I'm thankful. As always, I'd like to first
thank my family for their ongoing support. My daughter,
Maya, contributed the most by polishing the manuscript.

Thanks to my technical reviewer John Layden, whom | had
the privilege to work with previously on consulting
engagements, for reviewing the manuscript, and providing
valuable feedback. Thanks to Shay Zamir for another great
cover design.

As a Microsoft Most Valuable Professional (MVP), Gold Partner
(Data Analytics and Data Platform), and Power Bl Red Carpet
Partner, I've been privileged to enjoy close relationships with
the Microsoft product groups. It's great to see them working
together! Special thanks to the Power Bl and Analysis
Services teams.

Finally, thank you for purchasing this book!

conventions

This book uses different typefaces to differentiate between
code and regular English, and to help you identify important
concepts. Code that you type is presented in this font:

EVALUATE DimSalesTerritory

Referencing columns follows the DAX Table[Column]
notation. For example, DimEmployee[FullName] refers to the
FullName column in the DimEmployee table. Table
relationships also follow the DAX syntax. For example,
FactResellerSales[OrderDateKey] -> DimDate[DateKey]
denotes a many-to-one relationship between the
OrderDateKey column in the FactResellerSales table and the
DateKey column in the DimDate table. The relationship
direction (many-to-one) is indicated by the direction of the
arrow.

Exercises typically have the following sections although
sections can be omitted:

Practice

This section identifies the steps you need to take to
complete the exercise, such as the DAX code that you type
in.

Output

This section highlights the result from the practice, such as a
screenshot from a report that uses DAX calculations or
results from a query.

Analysis

The Analysis section provides the author's explanation about
the practice and output sections, such as line-by-line analysis
of a DAX formula.

source code

Applied DAX with Power Bl doesn't require much to get you
started. You can perform all practices with free software, and
you don't need a Power Bl license. Table 1 lists the software
that you need for all the exercises in the book. As you can
see, most of the software is not required.

Table 1 The software requirements for practices and code samples in
the book

Software Setup Purpose Lessons

Power Bl Desktop Required Implementing self-service data All
models

DAX Studio (https://daxstudio.org) Recommended Testing DAX queries Part 5

Power Bl Service (powerbi.com) Optional Testing data security Part 6

SQL Server Management Studio Optional Testing DAX queries Part 5

(SSMS)

Power Bl Report Builder Optional Creating a paginated report Part 5

SQL Server Analysis Services Tabular Optional Implement calculation groups Part 4

2019

Tabular Editor Optional Implement calculation groups Part 4

(https://tabulareditor.github.io/)

You can download the source code for the practices from
the book page at https://prologika.com/daxbook. After
downloading the zip file, extract it to any folder on your hard
drive (I recommend C:\DAX\Source\). Once this is done, you'll
see a folder for each part of the book. In each part folder,
you'll typically find a file for each lesson and the file name
matches the lesson name. This file includes the DAX
formulas if you prefer to copy and paste them.

Start with the Adventure Works.pbix file in the
\Source\Practice folder and keep on extending it as you go
through the lessons. For your convenience, the Adventure
Works.pbix file in each part folder includes the changes you
need to make in the exercises in the corresponding part of
the book, plus any supporting files required for the exercises.

https://daxstudio.org/
https://tabulareditor.github.io/
https://prologika.com/daxbook

For example, the Adventure Works.pbix file in the
\Source\Part2 folder includes the changes that you'll make
during the Part 2 practices.

(Optional) Installing the AdventureWorksDW database

Extending the Adventure Works model with DAX doesn't
require reimporting the data. However, Lesson 4 shows you
how you can implement custom columns in Power Query,
and this requires reimporting the affected tables. If you
decide to do this exercise, you need to install the
AdventureWorksDW database. This is a Microsoft-provided
database that simulates a data warehouse. You can install
the database on an on-prem SQL Server (local or shared) or
Azure SQL Database. Again, you don't have to do this
(installing a SQL Server alone can be challenging).

NOTE Microsoft ships Adventure Works databases with each version of SQL
Server. More recent versions of the databases have incremental changes and
they might have different data. Although the book exercises were tested with the
AdventureWorksDW2017 database, you can use a later version if you want.
Depending on the database version you install, you might find that reports might
show somewhat different data.

Follow these steps to download the AdventureWorksDW2017
database:

1.If you don't have a SQL Server, download and install the
free developer edition from https://microsoft.com/sql-
server/sql-server-downloads.

2.Download the AdventureWorksDW?2017 backup file from
https://github.com/Microsoft/sgl-server-
samples/releases/download/adventureworks/AdventureWorks
DW2017.bak.

3.Install SQL Server Management Studio (SSMS) from
https://docs.microsoft.com/sql/ssms/download-sqgl-server-
management-studio-ssms.

4.0pen SQL Server Management Studio (SSMS) and connect
to your SQL Server database instance. Restore the
AdventureWorksDW2017 backup file. If you're not sure how
to do so, read the instructions at

https://microsoft.com/sql-server/sql-server-downloads
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorksDW2017.bak
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks

https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks.

NOTE The data source settings of the sample Power Bl Desktop models in the
source code have connection strings to the AdventureWorksDW database. If you
decide to refresh the data, you must update the AdventureWorksDW data source
to reflect your specific setup. To do so in one step per file, open the *pbix file in
Power Bl Desktop, and then expand the Edit Queries button in the ribbon's Home
tab, and click "Data source settings". Click the "Change source" button and
change the server name to match your SQL Server name.

Reporting errors
Please submit bug reports to the book discussion list on
https://prologika.com/daxbook. Confirmed bugs and
inaccuracies will be published to the book errata document.
A link to the errata document is provided in the book web
page. The book includes links to web resources for further
study. Due to the transient nature of the Internet, some links
might no longer be valid or might be broken. Searching for
the document title is usually enough to recover the new link.
Your purchase of APPLIED DAX WITH POWER Bl includes
free access to an online forum sponsored by the author,
where you can make comments about the book, ask
technical questions, and receive help from the author and
the community. The author is not committed to a specific
amount of participation or successful resolution of the
question and his participation remains voluntary. You can
subscribe to the forum from the author's personal website
https://prologika.com/daxbook.

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://prologika.com/daxbook
https://prologika.com/dax

PART 1

Introduction

If you imagine a layered Power Bl model, where the bottom
layer is Power Query (for data shaping and transformation)
and the middle layer is the data model (where your tables
and columns are), then DAX calculations will be the top layer.
Therefore, DAX is dependent on the model schema and data
quality. If you don't get these layers right, you won't be
successful with DAX either. Therefore, the book starts with
important fundamentals.

The first lesson introduces you to DAX, its origin, and main
constructs. In the second lesson, you'll learn important data
modeling techniques, including star schemas and
relationships. Lastly, it's important to have at least a high-
level understanding of the storage engine to better
understand how DAX formulas work.

When going through the exercises, start with the
Adventure Works.pbix file in the \Source\Practice folder. If
you need to refer to the completed exercises and reports for
this part of the book, you'll find them in the Adventure Works
model in the \Source\Partl folder included in the book source
code.

Lesson 1

Introducing DAX

Power Bl promotes rapid personal business intelligence (Bl)
for essential data exploration and analysis. Chances are,
however, that in real life you might need to go beyond the
raw data and simple aggregations. Business needs might
necessitate extending your model with calculations. DAX
gives you the programmatic power to travel the "last mile"
and unlock the full potential of Power BI.

This lesson introduces you to DAX and how it's used in
Power BIl. You'll use DAX to implement a simple calculated
column, measure, and a query with the provided Adventure
Works Power Bl Desktop file in the \Source\Partl folder.

1.1 Understanding DAX

Data Analysis Expressions (DAX) is a powerful formula-based
language included in Microsoft Power Bl, Excel Power Pivot,
and Analysis Services Tabular that allows you to add custom
business logic with Excel-like formulas. DAX has two main
design goals:

L]

Simplicity - To get you started quickly with implementing
business logic, DAX uses the Excel standard formula
syntax and, in fact, inherits many Excel functions. If you're
a business analyst, you may already know many Excel
functions, such as SUM and AVERAGE. When you use
Power BI, you will find the same (or similar functions) in
DAX.

Relational - DAX is designed with data models in mind and
supports relational artifacts, including tables, columns,
and relationships. For example, if you want to sum up the
SalesAmount column in the FactResellerSales table, you
can use this formula:

=SUM(FactResellerSales[SalesAmount])

Although this book teaches you DAX with Power BI, a nice
bonus awaits you ahead because you're also learning how to
program Excel Power Pivot and Analysis Services Tabular. So,
if one day you find yourself working on a self-service model
in Excel or an organizational model powered by Analysis
Services Tabular, you'll find that you already have the
knowledge!

1.1.1 A Short History of DAX

Realizing the growing importance of self-service Bl, in 2010
Microsoft unveiled an Excel add-in called PowerPivot
(renamed to Power Pivot in 2013 because of Power Bl
rebranding). Since the tool needed an expression language,
the natural choice was building upon and extending the
Excel formulas. This revised formula language was named

Data Analysis Expressions (or DAX for short) to emphasize its
role as a programming language for data analytics.

NOTE Given the relational nature of a data model, you might wonder why
Microsoft didn't opt for SQL instead of Excel-like formulas. Although this scenario
was strongly considered, SQL is a standard of the American National Standards
Institute (ANSI). Therefore, introducing new extensions turned out to be a difficult
proposition. Moreover, back then Microsoft believed that Excel would become the
Microsoft premium tool for data analytics.

On the professional side of things, Microsoft SQL Server
Analysis Services 2012 introduced a new implementation
path called Tabular, side by side with the traditional
Multidimensional path for designing OLAP cubes. Bl pros use
Analysis Services Tabular to implement scalable
organizational models, such as in the case where they need
to import hundreds of millions of rows. Tabular is also the
workhorse behind Power Bl Service (powerbi.com) and Power
Bl Desktop. For example, every Power Bl Desktop instance
has a corresponding Tabular service running in the
background that hosts the data model and processes DAX
queries from Power Bl reports.

Because Tabular uses the same storage engine (called
xVelocity) as Power Pivot, DAX made its way to the
professional toolset. SQL Server 2012 extended DAX as a
query language to allow external tools to query Tabular
models in its native language.

In 2015, Microsoft unveiled Power Bl as their next
generation Bl platform for organizational and self-service
data analytics. Because Power Bl is also powered by
xVelocity, it inherited DAX. Given the large momentum and
adoption behind Power Bl, DAX now plays a more prominent
role than ever.

NOTE Although having its roots in Excel formulas, DAX formulas are designhed to
operate on data models and thus reference tables and columns. Excel cell and
range references have no relevance in data models and can't be used in DAX.

1.1.2 What Can You Do with DAX?

In a nutshell, you can use DAX expressions to extend your
models with custom business logic and to query external

models. There are three main ways you can leverage the
programming prowess of DAX: calculated columns,
measures, and queries.

Introducing calculated columns

A calculated column is a table column that uses a DAX
formula to produce the column values. This is conceptually
like a formula-based column added to an Excel list. The
formulas of calculated columns are evaluated for each row so
they are useful if you want add custom columns that do
something with other columns in the same row. Consider a
calculated column called FullName that's added to the
Customer table. It uses the following formula to concatenate
the customer's first name and last name:

FullName=[FirstName] & " " & [LastName]

Because its formula is evaluated for each row in the
Customer table (see Figure 1.1), the FullName calculated
column uses a DAX expression to return the full name for
each customer by concatenating the FirstName and
LastName columns. DAX refers to this by-row evaluation
context as row context. Again, this is very similar to how an
Excel formula works when applied to multiple rows in a list.

When a column contains a formula, Power Bl computes the
value for each table row and saves it. And from that point, a
calculation column is just like a regular column. Therefore,
calculated column values are immutable, meaning that they
can't change as a result of runtime conditions. For example,
the formula won't produce different results when the end
user applies a filter. Speaking of reporting, you can use
calculated columns to group and filter data, just like you can
use regular columns. For example, you can add a calculated
column to any area of the Power Bl Desktop's Visualizations
pane when it makes sense to do so.

FullMame = [FirstMame] & ™ " & [LastMame(]

FirstName MiddieMame LastiName

Larry Gill Larry Gill
Geoffrey Gonzalez firey Gonz
Blake ns
i Row Context =
rcissn Eavaluated for each row T
Casey Gutierrez Casey Gutierre:
Colleen Lu Colleen Lu
Jeremiah Stewart leremiah Stew

Figure 1.1 Calculated columns are expression-based
columns added to a table and are evaluated for each table
row.

Introducing measures

The true power of DAX is realized by implementing
measures. Measures are also expression-based but their
formulas are evaluated at runtime, that is when the report is
run. Specifically, DAX measures are evaluated at runtime for
each report cell as opposed to once for each table row. DAX
measures are always dynamic, and the result of the measure
formula is never saved. Moreover, measures are evaluated in
the filter context of each cell, as shown in Figure 1.2.

et ! ProductCategory ~ X

SalesTerritoryCguntoy 2007 2008 Total [N
Australia Sum(ResellerSales[SalesAmount]) p43,174.77° $1,323,820.73 W™ (Al
Canada Germany, 2008, Bikes 09,709.62" $4,370,334.95 5

| France i 9 $2,453,178.76 | :

B Accessories

Germany--------------$a-20-513-55-+ §722,502.00), §1543.915.65 |
United Kingdom §1,230,915.70 $1,060,862.55 $2,291,578.25 [iaahaa
United States $8,933,163.90 $7,951,335.55 $16,884,499.45 M Clothing

. Total $15,467,184. 51 $13,399,243.18 $28,866,427.79 . B Components

Flgure 1.2 Measures are evaluated for each ceII and they
operate in filter context.

This report summarizes the SalesAmount field by countries
on rows and by years on columns. The report is further
filtered to show only sales for the Bikes product category.

The filter context of the highlighted cell is the Germany value
of the DimSalesTerritory[SalesTerritoryCountry] field (on
rows), the 2008 value of the DimDate[CalendarYear] field (on
columns), and the Bikes value of the
DimProduct[ProductCategory] field (used as a filter).

If you're familiar with the SQL language, you can think of
the measure filter context as a WHERE clause that's
determined dynamically and then applied to each cell on the
report. When Power Bl calculates the expression for that cell,
it scopes the formula accordingly, such as to sum the sales
amount from the rows in the ResellerSales table where the
SalesTerritoryCountry value is Germany, the CalendarYear
value is 2008, and the ProductCategory value is Bikes.

NOTE Unlike calculated columns, which might be avoided by using other
implementation approaches, measures typically can't be replicated in other ways
- they must be written in DAX. That's because any other approach would produce
static values that don't change as a result of the user filtering data on the report.
For example, you may pre-calculate year-to-date (YTD) sales as of the most
current date, but this will not allow the user to see YTD sales as of a prior date.
Introducing DAX queries

Lastly, you can use DAX to query Power BI, Power Pivot, and
Analysis Services Tabular models. A DAX query is centered
on the DAX EVALUATE statement. For example, this simple
DAX query returns all data from the DimSalesTerritory table

in the Adventure Works Power Bl model.
EVALUATE DimSalesTerritory

Although not officially supported by Microsoft outside Power
Bl on the desktop, client tools can send DAX queriers to the
Analysis Services Tabular instance that is behind every Power
Bl model (they can also send MDX queries). For example,
when you interact with a report, Power Bl generates DAX
queries and sends them to the Analysis Services Tabular
instance that hosts the model. If you are tasked to create
reports using tools that require you to specify a query when
you connect to Tabular or Power Bl, such as Microsoft
Reporting Services, you can create your own DAX gqueries.

NOTE While only Power Bl Desktop is officially supported to interact with the
Analysis Services Tabular instance on the desktop, any client can interact with

the Tabular instance behind a Power Bl Premium workspace and query a
published Power Bl model. To learn more, read the article "Connect to datasets
with client applications and tools" at https://docs.microsoft.com/power-bi/service-
premium-connect-tools.

Another practical implication of a DAX query is creating and
testing DAX measures outside Power Bl Desktop. Suppose
you are working on a complex DAX measure and you prefer
to test it and profile its performance in the DAX Studio
community tool. You can define the measure in DAX Studio
and use a DAX query to test the measure.

1.1.3 Understanding DAX Syntax

As | mentioned, one of the DAX design goals is to look and
feel like the Excel formula language. Because of this, the
DAX syntax resembles the Excel formula syntax. The DAX
formula syntax is case-insensitive. For example, the following
two expressions are both valid:

=YEAR([Date])

=year([date])

That said, | suggest you have a naming convention and stick
to it. | personally prefer the first example where the function
names are in uppercase and the column references match
the column names in the model. This convention helps me
quickly identify functions and columns in DAX formulas, and
so this will be the convention that I'll use in this book.

Understanding expression syntax
A DAX formula for calculated columns and explicit measures
has the following syntax:

Name=expression

Name is the name of the calculated column or measure. The
expression must evaluate to a scalar (single) value.
Expressions can contain operators, constants, or column
references to return literal or Boolean values. The FullName
calculated column that you saw before is an example of a
simple expression that concatenates two values. You can add
as many spaces as you want to make the formula easier to
read.

https://docs.microsoft.com/power-bi/service-premium-connect-tools

Expressions can also include functions that perform more
complicated operations, such as aggregating data. For
example, back to Figure 1.2, the DAX formula references
the SUM function to aggregate the SalesAmount column in
the FactResellerSales table. Functions can be nested. For
example, the following formula nests the FILTER function
inside the COUNTROWS function to calculate the count of
line items associated with the Progressive Sports reseller:

=COUNTROWS(FILTER(FactResellerSales, RELATED(DimReseller[ResellerName])
= "Progressive Sports"))

Referencing columns

One of DAX's strengths over regular Excel formulas is that it
is designed to work with data model constructs, such as
table columns and relationships. This is much simpler and
more efficient than referencing Excel cells and ranges with
the Excel VLOOKUP function that you might have used in the
past. Column names are unique within a table. You can
reference a column using its fully qualified name in the
format <TableName>[<ColumnName>], such as in this
example which references the SalesAmount column in the
FactResellerSales table:

FactResellerSales[SalesAmount]

If the table name includes a space or is a reserved word,
such as Date, enclose it with single quotes:

'Reseller Sales'[SalesAmount] or 'Date'[CalendarYear]

When a calculated column references a column from the
same table, you can omit the table name. The AutoComplete
feature in the Power Bl Desktop formula bar helps you avoid
syntax errors when referencing columns. And of course, DAX
has many formulas to help you tackle simple and complex
requirements, but this is all you need to know for now to get
started with DAX.

TIP The official DAX documentation by Microsoft can be found at

https://docs.microsoft.com/dax. Another useful reference resource maintained by
the community is the DAX Guide at https://dax.guide/.

https://docs.microsoft.com/dax
https://dax.guide/

1.2 Practicing Basic DAX

Next, you'll practice working a basic calculated column, a
measure, and a DAX query to get a taste of programming
with DAX. Because Power Bl Service (powerbi.com) doesn't
currently support modeling features, you can't extend a
published model directly in Power Bl Service. Instead, you
must use Power Bl Desktop to extend your data model with
calculated columns and measures.

1.2.1 Implementing a Calculated Column

DAX includes various operators to create basic expressions,
such as expressions for concatenating strings and for
performing arithmetic operations. You can use them to
create simple expression-based columns.

Practice
Let's create a calculated column that shows the customer's

full name:

1.Double-click the \Source\Practice\Adventure Work.pbix file
to open it in Power Bl Desktop.

2.In the left black navigation bar, click the Data View tab to
open the Data view that lets you browse the content of the
tables in the model.

3.In the Fields list on the right, click the DimCustomer table
to select it. In the data preview grid that shows the data in
the table, scroll to the right and observe that the table has
FirstName and LastName columns, but it doesn't have a
column for the customer's full name. If you have two or more
customers with the same first name, the report will group
them together. This could be avoided by using the
customer's full name on the report.

4.In the Modeling bar, click the New Column button. This
adds a new column named "Column" to the end of the table
and activates the formula bar.

5.In the formula bar (only available in the Data View and
Report View tabs), enter this formula
(see Figure 1.3):

FullName = DimCustomer[FirstName] & " " & DimCustomer[LastName]

W o @ = | Adventure Works - Power Bl Desktop - O X

Home Modeling

Help Teo Lachev)

= . T ~ lome Table: ~
== LE‘ Modeling Data type: Whole Number Home Table q
= . . i
= ribbon Format: ~ Data Category: Up
Manage New | New | New ort by Fields M¢

Relationships MeasurejColumn | Table ~ Parameter Column~™ Aum -

Relationships Calculations What If Sort Formatting

1 Fullname = DimCustomer[Firsthame] & " " &

- D DimCustomer[LastName]
DateFirstPurchase ¥ | CommuteDistance |~ | -,
091 | ASTDATE Returns last n.

() LASTNONBLANK
(’) SAMEPERIODLASTYEAR
4 B DimCustomer

Phone -

% j11) 500 555-0125 Wednesday, July 10, 2013 2-5 Miles

Wednesday, January 18, 2012 0-1 Miles

Data View

1
tab

1

Tuesday, Jonuary 10, 2012 | 0-1 Miles

1 Saturday, October 19, 2013 | 2-5 Miles

Addresslinel
Addressline?

1) 500 555-0134 Thursday, August 1, 2013 | 2-5 Miles

1) 500 555-0115 Saturday, May 11, 2013 | 0-1 Miles

» i BirthDate
I Column

1) 500 555-0174 Friday, July 18, 2013 | 2-5 Miles

)
)
)
)
)
)

11) 500 555-0129 Sunday, April 7, 2013 ' 1-2 Miles

Saturday, November 9, 2013 | 2-5 Mile- ot Ilree

Figure 1.3 Calculated columns are evaluated for each table
row and their results are persisted.

6.Press Enter or click the checkmark button to the left of the
formula bar.

Analysis

This formula defines a calculated column called FullName.
Then, the DAX expression uses the concatenation operator to
concatenate the FirstName and LastName columns in the
DimCustomer table and to add an empty space in between
them. As you type, AutoComplete helps you with the formula
syntax, although you should also follow the syntax rules,
such as that a column reference must be enclosed in square
brackets.

Output

Once you commit the formula, Power Bl evaluates the
expression and adds the calculated column as a last column
in the table. Power Bl propagates the formula to all rows in
the DimCustomer table. Power Bl adds the FullName field to
the DimCustomer table in the Fields pane and prefixes it with
a special fxicon so you can quickly tell the calculated
columns apart.

NOTE What's the difference between a column and a field anyway? Besides
physical columns, a table in the Fields pane can include additional fields, such as
calculated columns, measures, groups and bins. For the most part, however, you
can refer to columns and fields interchangeably.

1.(Optional) Click the Report View tab in the navigation bar.
Create a visual that uses the DimCustomer[FullName]
column (or refer to the Calculated Column visual in
\Source\lntro\Adventure Works).

2.Press Ctrl+S (or File -> Save) to save the Adventure Works
file. Remind yourself to use this file from this point forward
for practices.

1.2.2 Creating a Quick Measure

Quick measures are Power Bl prepackaged DAX measures for
common analytical requirements, such as time calculations,
aggregates, and totals. Quick measures are a great way to
get you started with common DAX measures and learn DAX
along the way.

Practice
Suppose you want to implement a running sales total across
years.

1.Right-click the FactResellerSales table in the Fields pane
and then click "New quick measure". Alternatively, right-click
FactResellerSales[SalesAmount] in the Fields pane and then
click "New quick measure".

2.In the "Quick measures" window, expand the Calculation
drop-down. Observe that Power Bl supports various quick
measures.

3.Select "Running total" under the Totals section (see Figure
1.4).

Quick measures

Calculation Fields

Running total v L Search

Calculate the running total over a measure in a specific .
field. Learn more n DimCustomer

DimDate
Base value ©®

CalendarQuarter

Sum of SalesAmount ¥ X
CalendarSemester
Field ® CalendarYear
| Date
CalendarYear X DateKey
3 . DayNumberOfMonth
Direction © 4
5 DayNumberOfWeek
Ascending b4 DayNumberOfYear

EnglishDayNameOfWeek

Figure 1.4 Power Bl supports various quick measures to
meet common analytical requirements.

4.Drag the FactResellerSales[SalesAmount] field to the "Base
value" area. Drag the DimDate[CalendarYear] to the Field
area. Click OK.

Analysis

Power Bl adds a new "SalesAmount running total in
CalendarYear" field to the FactResellerSales table in the
Fields pane.

1.Make sure that the Report View tab or the Data View tab is
selected (you can't see the measure formula in the Model
View tab).

2.Double click this field in the Fields pane. Rename it to
SalesAmount RT.

3.Notice that the formula bar shows the DAX formula behind
the measure:

SalesAmount RT =

CALCULATE(

SUM('FactResellerSales'[SalesAmount]),

FILTER(

ALLSELECTED('DimDate'[CalendarYear]),
ISONORAFTER('DimDate'[CalendarYear], MAX('DimDate'[CalendarYear]), DESC)
))

This formula uses the CALCULATE function to overwrite the
context of the expression passed as a first argument.
Specifically, the second argument uses the FILTER function to
filter the DimDate table to return only dates that are before
than or equal to the current year on the report. It does so by
using the DAX ISONORAFTER function. When the third
argument of this function specifies a descending order, it
compares the second argument to the first, and returns
TRUE if the second argument is less than or equal to the
first. So, if the report year is 2012, the FILTER function will
return all dates from DimDate whose year is less than or
equal to 2012.

TIP Love it or hate it, the formula bar is the only editor Microsoft provided to work
with formulas of calculated columns and measures. If you hate it, I'll show you in
the "Queries" part of this book how you can create and test measures outside
Power Bl Desktop using the DAX Studio community tool. If you love it, take a look
at these keyboard shortcuts to get the most out of it
(https://docs.microsoft.com/power-bi/desktop-formula-editor).

Once you create the quick measure, it's just like any explicit
DAX measure. You can rename it or use it on your reports.
However, you can't go back to the "Quick measures" window.
To customize the measure, you must make changes directly
to the formula, so you still need to know some DAX.

Output
Let's create a report to test the new measure (or refer to the
Quick Measure report in \Intro\Adventure Works.pbix file).

1.Add a Table visual to the report with the
DimDate[CalendarYear] and FactResellerSales[SalesAmount]
fields in the Values area. To prevent Power Bl from
summarizing CalendarYear by default since it's a numeric

https://docs.microsoft.com/power-bi/desktop-formula-editor

field, expand the drop-down next to CalendarYear in the
Values area and select "Don't summarize".

TIP Some numeric fields, such as CalendarYear, CalendarQuarter, shouldn't be
summarized at all as doing so produces non-sensical results. To tell Power Bl not
to summarize a numeric field again, select the field in the Fields page, click the
Modeling ribbon, expand the Default Summarization dropdown, and select "Don't
summarize". This removes the sigma (3) icon in the Fields pane in front of the
field to indicate that the field won't be summarized by default.

2.Add FactResellerSales[SalesAmount RT] field to the Table
visual. Notice that it accumulates across years, as shown in
Figure 1.5.

Calendaryear Salesfémount SalesAmount RT
-
2010
2011
2012
2013
2014 $80,450,596.9

Total $80,450,596.9823 $80,450,596.9823

Figure 1.5 The quick measure accumulates sales over
years, and it's produced by the "Running total" quick
measure.

$80,450,596.5

1.2.3 Analyzing a DAX Query

In this practice, you'll intercept the DAX query behind a
report visual in order to analyze its execution time and to see
the actual query statement. Power Bl Desktop has a
Performance Analyzer feature for this purpose.

Practice
Start by enabling Performance Analyzer.

1.In Power Bl Desktop, click the View ribbon and check the
Performance Analyzer setting. This will open the Performance
Analyzer pane.

2.Click Start Recording in the Performance Analyzer pane.
Once you start recording, any action that requires refreshing
a visual, such as filtering or cross-highlighting, will populate
the Performance Analyzer pane. You'll see the statistics of
each visual logged in the load order with its corresponding
load duration.

3.You can click the "Refresh visuals" link in Performance
Analyzer to refresh all visuals on the page and capture all
queries. However, once you are in a recording mode, every
visual adds a new icon to help you refresh only that visual. To
practice this, hover on the Table visual you authored in the
last practice and click the "Refresh this visual" icon that will
appear below the visual.

PERFORMANCE ANALYZER X

(®) start Recording () Refresh visuals ® Stop

& Clear [2 Export

Name Duration (ms)

() Refreshed visual ~

E Quick Measure 964
DAX Query 78
Visual display 96
Other

Copy query

Figure 1.6 Use the Performance Analyzer statistics to
capture the query duration.

Output
Next, let's examine the captured duration statistics (all
numbers are in milliseconds).

* DAX query - The length of time to execute the query.

* Visual display - How long it took for the visual to render on
the screen after the query is executed.

* Other - This is the time that the visual spent in other
tasks, such as preparing queries, waiting for other visuals
to complete, or doing some other background processing.

1.Click the "Copy query" link. Click Stop.

2.0pen Notepad (or favorite text editor) and paste the query.
You should see this code:

/| DAX Query

EVALUATE

TOPN (502,

SUMMARIZECOLUMNS(

ROLLUPADDISSUBTOTAL('DimDate'[CalendarYear], "IsGrandTotalRowTotal"),

"SalesAmount_RT", 'FactResellerSales'[SalesAmount RT],
"SumSalesAmount", CALCULATE(SUM('FactResellerSales'[SalesAmount]))

),
[IsGrandTotalRowTotal], O,

'‘DimDate'[CalendarYear], 1)

ORDER BY

[IsGrandTotalRowTotal] DESC, 'DimDate'[CalendarYear]

Analysis

When the user interacts with a report, Power Bl Desktop
autogenerates DAX queries and sends them to the Analysis
Services Tabular service that is behind every Power Desktop

instance.

TIP Open the Windows Task Manager (Ctl+Shft+Esc), find Power Bl Desktop in
the Processes tab, and expand it. The Microsoft SQL Server Analysis Services
process is the backend Analysis Services Tabular instance that hosts the
Adventure Works model. Every time you open a new Power Bl Desktop instance
and load a file, Power Bl spins a new Tabular process, so you could have several
running in the background.

You can capture and analyze these queries, such as to find
which query slows down the report. Compared to almost a
second to refresh the visual, the query took only 78
milliseconds, so it doesn't warrant further performance
optimization.

1.3 Summary

In this lesson, | introduced you to DAX and emphasized its
role as a programming language in the Microsoft Bl platform.
You learned how to create basic calculated columns and
measures, and how to capture DAX queries that Power Bl
generates when you interact with a report. The next lesson
will provide a quick overview of the Adventure Works model
that you'll be using throughout this book.

Lesson 2

Exploring the Model

As | explained in the previous lesson, you can use DAX to
extend Power BI, Power Pivot, and Analysis Services models.
Power Bl Desktop is the Microsoft premium modeling tool for
self-service Bl. Packed with features, Power Bl Desktop is a
free tool that you can download and start using immediately
to gain insights from your data.

Since you'll be using the Adventure Works sample model
throughout this book, it would be worthwhile to get familiar
with it. This lesson walks you through its structure and
introduces fundamental data modeling concepts, including
schemas and relationships.

2.1 Data Modeling Fundamentals

Power Bl organizes data in tables, like how Excel allows you
to organize data into Excel lists. Each table consists of
columns, also called fields. Data can be imported (cached) in
tables or left in the original data source. When data is left at
the data source, Power Bl has a special mechanism called
DirectQuery to connect to the data source. When it does this,
it converts DAX queries to native queries that the data
source understands. Not all data sources support
DirectQuery and DirectQuery doesn't support all DAX
functions.

NOTE DirectQuery has DAX limitations which are described in more detail in the
"Using DirectQuery in Power BI" article at https://docs.microsoft.com/power-
bi/desktop-directquery-about. The Adventure Works model has all its data
imported so you don't need to worry about these limitations.

2.1.1 Understanding Schemas

If all the data is provided to you as just one table, then you
could count yourself lucky and skip this section altogether.
Chances are, however, that your model might import
multiple tables from the same or different data sources. This
requires learning some basic database and schema
concepts. The term "schema" here is used to describe the
table definitions and how tables relate to each other. I'll keep
the discussion light on purpose to get you started with data
modeling as fast as possible.

NOTE Having all data in a single table might not require modeling, but it isn't a
best practice. Suppose you initially wanted to analyze reseller sales and you've
got a single dataset with columns such as Reseller, Sales Territory, and so on.
Then you decide to extend the model with direct sales to consumers to
consolidate reporting that spans now two business areas. Now you have a
problem. Because you merged business dimensions into the reseller sales
dataset, you won't be able to slice and dice the two datasets by the same lookup
tables (Reseller, Sales Territory, Date, and others). In addition, a large table might
strain your computer resources as it'll require more time to import and more
memory to store the data. At the same time, a fully normalized schema, such as
having SalesOrderHeader and SalesOrderDetails tables, is also not desirable
because you'll end up with many tables and the model might become difficult to
understand and navigate. When modeling your data, it's important to find a good

https://docs.microsoft.com/power-bi/desktop-directquery-about

balance between business requirements and normalization, and that balance is
the star schema.
Understanding star schemas
For a lack of better terms, I'll use the dimensional modeling
terminology to illustrate the star schema (for more
information about star schemas, see
http://en.wikipedia.org/wiki/Star_schema). Figure 2.1 shows
two schema types. The left diagram illustrates a star
schema, where the ResellerSales table is in the center. This
table stores the history of the Adventure Works reseller
sales, and each row represents the most granular
information about the sale transaction. This could be a line
item in the sales order that includes the order quantity, sales
amount, tax amount, discount, and other numeric fields.
Dimensional modeling refers to these tables as fact tables.
As you can imagine, the ResellerSales table can be very long
if it keeps several years of sales data. Don't be alarmed
about the dataset size though. Thanks to the state-of-the art
underlying storage technology, your Power Bl data model
can still import and store millions of rows!

Star Schema Snowflake Schema
Date Date
Category
Geography (/ \7 Product Geography (/ \7 Product
ResellerSales ResellerSales
Reseller /\ Employee Reseller /\ Employee

Figure 2.1 Power Bl models support both star and snowflake
schema types, but the star schema is recommended.

http://en.wikipedia.org/wiki/Star_schema

The ResellerSales table is related to other tables, called
dimension or lookup tables. These tables provide contextual
information to each row stored in the ResellerSales table. For
example, the Date table might include date-related fields,
such as Date, Quarter, and Year columns, to allow you to
aggregate data at day, quarter, and year levels, respectively.
The Product table might include ProductName, Color, Size
fields, and so on.

The reason why your data model should have these fields
in separate lookup tables, is that, for the most part, their
content doesn't need a historical record. For example, if the
product name changes, this probably would be an in-place
change. By contrast, if you were to continue adding columns
to the ResellerSales table, you might end up with
performance and maintenance issues. If you need to make a
change, you might have to update millions of rows of data as
opposed to updating a single row. Similarly, if you were to
add a new column to the Date table, such as FiscalYear,
you'll have to update all the rows in the ResellerSales table.

Are you limited to only one fact table with Power BI?
Absolutely not! For example, you can add an InternetSales
fact table that stores direct sales to individuals. In the case
of multiple fact tables, you should model the fact tables to
share some common lookup tables so that you could match
and consolidate data for cross-reporting purposes, such as to
show reseller and Internet sales side by side and grouped by
year and product. This is another reason to avoid a single
monolithic dataset and to have logically related fields in
separate tables (if you have this option). Don't worry if this
isn't immediately clear. Designing a model that accurately
represents requirements is difficult even for Bl pros, but it
gets easier with practice.

NOTE Another common issue that | witness with novice users is creating a
separate dataset for each report, e.g. one dataset for a report showing reseller
sales and another dataset for a report showing direct sales. Like the "single
dataset" issue | discussed above, this design will lead to data duplication and
inability to produce consolidated reports that span multiple areas. Even worse
would be to embed calculations in the dataset, such as calculating Profit or Year-
to-Date in a SQL view that is used to source the data. Like the issue with defining

calculations in a report, this approach will surely lead to redundant calculations or
calculations that produce different results from one report to another.

Understanding snowflake schemas

A snowflake schema is where some lookup tables relate to
other lookup tables but not directly to the fact table. Going
back to Figure 2.1, you can see that product categories are
kept in a Category table that relates to the Product table and
not directly to the ResellerSales table. One strong motivation
for snowflaking is that you might have another fact table,
such as SalesQuota, that stores data not at a product level
but at a category level. If you keep categories in their own
Category table, this design would allow you to join the
Category lookup table to the SalesQuota table, and you'll still
be able to have a report that shows actual and budget data
grouped by category (and any other shared dimension
tables).

Power Bl supports snowflake schemas just fine. However, if
you have a choice, you should minimize snowflaking when
it's not needed. This is because snowflaking increases the
number of tables in the model, making it more difficult for
other users to understand it. If you import data from a
database with a normalized schema, you can minimize
snowflaking by merging snowflaked tables. For example, you
can use a SQL query that joins the Product and Category
tables. However, if you import text files, you won't have that
option because you can't use SQL. Instead, you can handle
denormalization tasks in the Power Query, or by adding
calculated columns that use DAX expressions, such as by
adding a column to the Product table to look up the product
category from the Category table. Then you can hide the
Category table.

To recap this schema discussion, you can view the star
schema as the opposite of its snowflake counterpart. While
the snowflake schema embraces normalization as the
preferred designed technique to reduce data duplication, the
star schema favors denormalization or data entities and
reducing the overall number of tables, although this process
results in data duplication (a category is repeated for each

product that has the same category). Denormalization (star
schemas) and Bl go hand in hand. That's because star
schemas reduce the number of tables and required joins.
This makes your model faster and more intuitive.

2.1.2 Exploring Schemas

Let's take a moment to explore the schema of the Adventure
Works data model in Power Bl Desktop. The Adventure Works
model imports several tables from the sample
AdventureWorksDW database which is designed as a data
warehouse database and consists of several fact and
dimension tables.

Practice
You can use the Model View tab to a see a graphical diagram
showing how tables relate to each other at a glance.

1.In Power Bl Desktop, click the Model View tab in the left
navigation bar.

2.Notice that the "All tables" tab shows all tables in the
model. However, as the number of tables grow, it becomes
difficult to analyze the diagram, so | created three other
layouts that show subsets of the schema.

TIP A layout helps you analyze a subset of the model schema. You can create a
new layout by adding a new tab in the Model View diagram. Then drag a table
from the Fields pane. To add related tables, right-click the table you added in the
Fields pane and click "Add related tables".

3.Click the Reseller Sales tab. Notice that the
FactResellerSales table is surrounded by five dimension
tables, forming a typical star schema.

4.In the Fields pane, right-click the DimProduct table and
click "Add related tables". Power Bl adds the
DimProductSubcategory table because it's related to
DimProduct.

5.In the Fields pane, right-click the DimProductSubcategory
table and click "Add related tables". Power Bl adds the
DimProductCategory table because it's related to
DimProductSubcategory.

6.(Optional) Explore the Internet Sales and Sales Quotas
diagrams.

Analysis

The Adventure Works model imports 11 tables from the
AdventureWorksDW SQL Server database. Most tables form
star schemas, with a fact table surrounded by related
dimension tables. There is some snowflaking, such as in the
case of DimProduct, DimProductSubcategory, and
DimProductCategory. I've decided to leave the original table
names so you can quickly see which tables are fact tables
(prefixed with "Fact") and dimension tables (prefixed with
"Dim"). In real life, you should consider renaming tables and
columns to make them more user friendly.

TIP When it comes to naming conventions, | like to keep table and column names
as short as possible so that they don't occupy too much space in report labels. |
prefer camel casing, where the first letter of each word is capitalized.

| also prefer to use a plural case for fact tables, such as ResellerSales, and a
singular case for lookup (dimension) tables, such as Reseller. You don't have to
follow this convention, but it's important to have a consistent naming convention
and to stick to it. While I'm on this subject, Power Bl supports identical column
names across tables, such as SalesAmount in the ResellerSales table and
SalesAmount in the InternetSales table. However, it might be confusing to have
fields with the same names side by side in the same visual unless you rename
them. Power Bl supports renaming labels in the visual (just double-click the field
name in the Visualizations pane). Or, you can rename them in the Fields pane by
adding a prefix to have unique column names across tables, such as
ResellerSalesAmount and InternetSalesAmount. Or, you can create DAX measures
with unique names and then hide the original columns.

2.1.3 Exploring Fact Tables

Next, let's explore the data in some of the tables that you'll
be using for subsequent practices.

Practice
You can use the Data View tab to browse the table data.

1.In Power Bl Desktop, click the Data View tab in the left
navigation bar.

2.In the Fields pane, click FactinternetSales to select it. This
table stores sales to individual customers, such as when
customers place orders on the Adventure Works website.
Each row in the table represents a line item in the customer

order. For example, if the customer ordered two items, the
corresponding order will have two order lines which will be
represented by two rows in FactinternetSales. The
SalesOrderNumber column captures the order number and
the SalesOrderLineNumber column stores the line sequence
number.

Analysis

Notice that the first eight columns are suffixed with "Key".
They relate to the corresponding dimension tables to give
additional context to each row, such as what product was
sold, when it was sold, which customer ordered it, and so on.
Notice that there are a few numeric fields that are typical for
a sales transaction, such as SalesAmount, OrderQuantity,
TaxAmt, and DiscountAmount. The dimensional methodology
refers to such fields as facts. They are extremely useful
because they can be aggregated across the related
dimensions, such as to summarize the sales amount by
product to find the top 10 bestselling products.

Similarly, the FactResellerSales table represents sales from
retail stores. It has a very similar schema as
FactinternetSales but there are differences in the dimension
keys. For example, the CustomerKey column is missing
because are no individual customers placing orders. Instead,
there is a ResellerKey column to designate the reseller that
was associated with the sale. There is also an EmployeeKey
column to associate a salesperson with the order.

Finally, the third fact table, FactSalesQuota, captures the
quarterly sales quota that is assigned to each salesperson so
that you can analyze actual versus budget sales.

2.1.4 Exploring Dimension Tables

A dimension (lookup) table gives context to facts stored in a
fact table and let you analyze them in many ways, such as
for analyzing sales by year, quarter, and month. Each field in
a dimension table is a candidate for exploring facts in the
related fact tables by this field.

Practice
Let's look at a few dimension tables:

1.Make sure that the Data View tab is selected in the left
navigation bar.

2.Almost every model has a Date table because time analysis
is so common. In the Fields pane, select the DimDate table.

Analysis

A dimension table typically has a column that uniquely
identifies each row. In DimDate, this column is DateKey, but
the Date column can serve this purpose too.

NOTE The original column name in the AdventureWorksDW database was
FullDateAlternateKey. However, because we'll use this column a lot in DAX
formulas, | renamed it to Date. You can right-click DimDate and click Edit Query
to open Power Query and see what transformations are made to a table, including
renaming columns.

The rest of the columns are typical for date tables. Adventure
Works has a fiscal calendar, which explains the
FiscalSemester, FiscalQuarter, and FiscalYear columns. It also
supports multiple languages and it has corresponding
columns that store the language translations. For example,
EnglishMonthName stores the name of the month in English.
There is more to date tables that you need to know but I'll
stop here for now.

The rest of the dimension tables follow the same pattern.
For example, the CustomerKey column in DimCustomer
uniquely identifies each customer. Such columns are called
surrogate keys in dimensional modeling. The "alternate key"
columns, such as CustomerAlternateKey, are called business
keys and they typically correspond to identifiers in the
source systems. For example, the first customer listed, Larry
Gill, is probably identified as AW00011602 in the Adventure
Works ERP system. However, there could be changes to
Larry, such as when he moves to a new address. The source
system might simply overwrite Larry's record and the data
warehouse could follow this pattern (dimensional modeling
refers to overwrites as Type 1 changes). Of course, such
overwrites "lose" historical changes.

But other changes could be important for data analytics
and need to be preserved in the data warehouse. Suppose
you do analysis by cities and Larry moved from New York to
Atlanta. If his address is overwritten, his whole sales history
will be contributed to Atlanta which can inflate the historical
Atlanta sales. If this is problematic, one option is to add a
new row for Larry in DimCustomer that is associated now
with his new geography. Dimensional modeling refers to this
type of change as a Type 2 change. However, because
CustomerAlternateKey is not unigue anymore, a system-
generated CustomerKey was introduced as a unique
(surrogate) key.

2.2 Relationship Fundamentals

Once you have multiple tables, you need a way to relate
them. If two tables aren't related, your model won't
aggregate data correctly when you use both tables on a
report. Because relationships are very important to Power Bl
data modeling and DAX, let's quickly cover their

fundamentals.

E Date

& ResellerSales

> DateKey

| Date
¢ DayMumberOfeek

One-to-Many
Single Filter
Relationship

Ln:la rdCosl

|
rc::gt
nt

: NameOf
Primary Key ame
[' #rOfMonth

> DayMNumberOfyear

3 TaxAmt

> Freighs

can Foreign Key -

Cugtc-rm erPOMup :J"E'r_r

5 e
2, WeekNumberD.. Lookup Table
EnglishhMonthMamSg: |

OrderDate

CalendarQuarter

MonthNumberQOfyea m

4 [[

MalandarVaar

DueDate
ShipDate

Figure 2.2 The Date column (primary key) in the Date table
is related to the matching OrderDate column (foreign key) in

the ResellerSales table.

2.2.1 Understanding Relationships

In order to relate two tables, there must be data
commonalities between the two tables. This isn't much
different than joins in relational databases, such as Microsoft
Access or SQL Server. For example, you won't be able to
analyze sales by product if there isn't a common column
between the ResellerSales and Date tables that ties a date to

a sale (see Figure 2.2).

Auto-detecting relationships

If the underlying data source has relationships (referential
integrity constraints) defined, Power Bl Desktop will detect
and carry them to the model (this is controlled by the
"Import relationships from data sources" setting in File ->
Options and setting -> Options -> Data Load under the
Current File session). If not, Power Bl is capable of auto-
detecting relationships using internal rules (this is controlled
by the "Autodetect new relationships after data is loaded"
setting in the same section).

Of course, you can also create relationships manually. It's
important to understand that your data model is layered on
top of the original data. No model changes affect the original
data source and its design. You only need rights to read from
the data source so that you can import the data you need.

Understanding related columns

You'll typically create a relationship between a fact table and
a dimension table. A relationship requires common columns
in each table. Usually, the dimension table will have a
column that uniquely identifies each row in a table. Such a
column is called a primary key. For example, the Date
column uniquely identifies each row in the Date table and no
other row has the same value. An employee identifier or an
e-mail address can be used as a primary key in an Employee
table. To join Date to ResellerSales, in the ResellerSales
table, you must have a matching column, which is called a
foreign key. For example, the OrderDate column in the
ResellerSales table is a foreign key.

A matching column means a column in the fact table that
has matching values in the lookup table. The column names
of the primary key and foreign key don't have to be the same
(values are important, not names). For example, if the
ResellerSales table has a sale recorded on January 1,

2015, there should be a row in the Date table with a date in
the Date column of January 1, 2015. If there isn't, the data
model won't show an error, but all the sales that don't have
matching dates in the Data table would appear under an
unknown (blank) value in a report that groups ResellerSales

data by some column in the Date table. Typically, a fact table
has several foreign keys, so it can be related to different
lookup tables.

NOTE Relationships from fact tables to the same lookup table don't have to use
the same column. For example, ResellerSales can join Date on the Date column
but InternetSales might join it on the DateKey column, for example in the case
where there isn't a column of a Date data type in InternetSales. If a column
uniquely identifies each row, the lookup table can have different "primary key"
columns.

As | mentioned, you'll join a dimension (lookup) table to a
fact table and the dimension table will have a primary
(unique) key that you'll relate to the corresponding column in
the fact table. But a primary key is not required. For
example, you might have Invoices and Orders tables, where
the Orders table has the invoice number, which may not be
unique in the Invoices table (an invoice can have several
lines). However, you can still join these two tables unless you
run into some of the Power Bl relationship limitations, such
as that redundant relationship paths are not allowed. For
example, A-> Cand A -> B -> C form redundant
relationships between tables A and C.

About relationship cardinality
The relationship cardinality reflects the number of rows in
one table that are associated with rows in the related table.
Power Bl uses the relationship carnality for data validation.
Notice that in Figure 2.2, the number 1 is shown on the left
side of the relationship towards the Date table and an
asterisk (*) is shown next to the ResellerSales table. This
denotes a one-to-many cardinality. To understand this better,
consider that one row (one date) in the Date table can have
zero, one, or many recorded sales in ResellerSales, and one
product in the Product table corresponds to one or many
sales in ResellerSales, and so on. The important word here is
"many"”.

Although not a common cardinality, Power Bl also supports
a one-to-one relationship type. For example, you might have
Employee and SalesPerson tables in a snowflake schema,
where a salesperson is a type of an employee and each

salesperson relates to a single employee. By specifying a
one-to-one relationship between Employee and SalesPerson,
you're telling Power Bl to check the data cardinality and
show an error if the one-to-many relationship is detected on
data refresh. A one-to-one relationship also brings additional
simplifications when working with DAX calculations, such as
to let you interchangeably use the DAX RELATED and
RELATEDTABLE functions.

Lastly, Power Bl supports a many-to-many relationship
cardinality but don't confuse it with the many-to-many
relationship type that typically requires a bridge table and
it's discussed in the "Many-to-many Relationships" lesson.
The Orders-Invoices relationship that | just mentioned is an
example of a many-to-many cardinality because the invoice
number is not unique in the Invoices table.

About relationship cross filter direction
While the relationship cardinality is only useful to validate
the expected association between rows in two tables, a more
important characteristic is the filter direction. Also note that
in Figure 2.2, there's an arrow indicator pointing toward the
ResellerSales table. This indicates that this relationship has a
single cross filtering direction between the Date and Reseller
tables. In other words, the ResellerSales table can be
analyzed using the Date table, but not the other way around.
For example, you can have a report that groups sales by
any of the fields in the Date table. However, you can't
aggregate dates, such as counting them, by a field in the
ResellerSales table, which is probably meaningless anyway.
That said, there are valid business requirements that can
benefit from bidirectional relationships and we'll explore
them later in this book.

NOTE Why not have bidirectional relationships by default for maximum
flexibility? Bidirectional relationships may also result in redundant paths which
Power Bl Desktop will detect and disallow. As a best practice, Power Bl starts with
a unidirectional model, but you can turn on bidirectional cross filtering only when
needed.

Active and inactive relationships

A standing limitation in Power Bl is that it only supports one
active relationship between two tables. An active relationship
is a relationship that Power Bl follows to automatically
aggregate the data between two tables when both tables are
used in a report. Glancing back to Figure 2.2, the
relationship ResellerSales[OrderDate] -> Date[Date] is the
only relationship between the two tables and it's active
because it has a solid line. You can also double-click the
relationship and examine the "Make this relationship active"
flag. Consequently, when you create a report that slices
InternetSales by Date, Power Bl automatically aggregates
sales by the order date associated with each sale.

What if you want to give the user an option to analyze
sales by ship date or due date? Power Bl will let you create
these relationships, but it will make them inactive and they
will have dotted lines. Power Bl will also deactivate
relationships when it discovers redundant relationships, such
as attempting to relate tables A-> B -> Cand A -> C.
Although Power Bl doesn't have user interface to let the end
user traverse inactive relationships, they are still useful
because you can use DAX to navigate them
programmatically.

That's all you need to know about relationships for now.
Let's take a moment to explore the existing relationships in
the Adventure Works model.

2.2.2 Exploring Relationships

As it stands, the Adventure Works model has 11 tables.
Because the AdventureWorksDW SQL Server database has
foreign keys defined, Power Bl has detected them and
created corresponding relationships.

Exploring the Reseller Sales diagram

Let's examine the Reseller Sales diagram in the Model View
tab. Notice that the FactResellerSales table is related to five
dimensions: DimReseller, DimDate, DimSalesTerritory,
DimEmployee, and DimProduct. All the relationships are
many-to-one from FactResellerSales to the corresponding

dimensions. All the relationships are unidirectional which is
indicated by the arrow pointing toward FactResellerSales.
Consequently, you can aggregate FactResellerSales by any
dimension.

The relationships between FactResellerSales and DimDate
deserve more attention. Hover on the relationship that has a
solid line (or double-click it to open its properties). This is an
active FactResellerSales[OrderDateKey] -> DimDate[Date]
relationship. When you hover on it, Power Bl shows the
related columns. The other two relationships are inactive
because they have dotted lines.

NOTE AdventureWorksDW uses a "smart" integer primary key for the Date table
in the format YYYYMMDD. This is a common practice for data warehousing, but
it's not required and probably redundant since FactResellerSales has date
columns. For example, you can recreate the relationship between
FactResellerSales[OrderDate] and DimDate[Date] columns and remove the
OrderDateKey column.

There is another inactive relationship between
DimSalesTerritory and DimEmployee. Power Bl has
deactivated it because there is already an active relationship
between FactResellerSales and DimEmployee. If the user
analyzes FactResellerSales by DimEmployee, should Power Bl
use the direct relationship or go through DimSalesTerritory?
The second scenario could be useful if you want to analyze
sales only by employees who are assigned to a sales
territory. However, because as it stands Power Bl can't
prompt the user which relationship to use, Power Bl has
deactivated DimEmployee[SalesTerritoryKey] ->
DimSalesTerritory[SalesTerritoryKey].

Finally, the snowflaked DimProduct,
DimProductSubcategory, and DimProductCategory tables are
related. Such relationships are sometimes called cascading
relationships and Power Bl supports them. For example, you
can analyze FactResellerSales by DimProductCategory. When
performing this analysis, Power Bl will traverse the
relationships among these three tables before it gets to
FactResellerSales.

Exploring the Internet Sales diagram

The Internet Sales diagram is much simpler.
FactinternetSales is related to four dimensions: DimProduct,
DimDate, DimCustomer, and DimSalesTerritory. All
relationships are unidirectional and many-to-one. Like
FactResellerSales, FactinternetSales has one active
relationship to DimDate; the other two are inactive.

Exploring the Sales Quota diagram

This layout is even simpler. FactSalesQuota relates to
DimEmployee and DimDate with unidirectional, many-to-one
relationships.

NOTE While analyzing the schema, note that the three fact tables share some
dimensions. Dimensional modeling refers to such common dimensions as
conformed. This is very powerful because it allows you to have measures from
different fact tables sliced by shared dimensions in the same visual! For example,
you can summarize FactResellerSales[SalesAmount] and
FactinternetSales[SalesAmount] by any field in DimDate, DimProduct, and
DimSalesTerritory side by side in one visual. Or, you can compare salesperson's
actuals (FactResellerSales) versus budget (FactSalesQuota) by DimDate and
DimEmployee.

Practice

Let's see what happens when you attempt to analyze data in

one table by an unrelated table.
1. Add a Table visual (or refer to the Unrelated Tables report
in the \Source\lntro\Adventure Works).

2.Bind it to DimEmployee[FirstName] and
FactinternetSales[SalesAmount]. Compare your results with
Figure 2.3.

FirstName SalesAmount

W

Total $29,358,677.2207

Figure 2.3 Analyzing by an unrelated table produces
repeating values.

Analysis

The report repeats the grand total for each employee. This is
the behavior you'll get if there's no relationship between the
two tables. If Internet sales should aggregate by employee,

you must somehow define a relationship to DimEmployee to
resolve this issue.

2.3 Summary

One of the most prominent strengths of Power Bl is that it
supports flexible data models which could include multiple
fact and dimension tables. In this lesson, you explored how
the Adventure Works model has star and snowflake schemas,
and how it uses relationships to relate tables. Having laid the
necessary foundation, it's now time to learn a bit more about
how Power Bl stores and processes data.

Lesson 3

Understanding Storage

Our overview of data modeling fundamentals won't be
complete until you learn how Power Bl stores data in the
model. It's the storage engine that gives your Power Bl
reports excellent performance even with millions of rows. It's
important to have a least a high-level understanding of the
storage engine to better understand how DAX formulas work.
In addition, your model storage design might affect DAX
performance.

This lesson introduces you to xVelocity (also known as
VertiPaq) which powers the three implementations of
semantic layers in the Microsoft Bl platform: Power BIl, Power
Pivot and Analysis Services Tabular. It will also teach you how
to analyze storage of your data model, such as to
understand what columns take up the most memory.

3.1 Understanding the Storage Engine

When Microsoft started work on Power Pivot, they realized it
needed a new type of storage that would be more suitable
for data analytics. To provide the best storage performance,
Microsoft implemented a proprietary in-memory store called
VertiPaqg, which was later rebranded as xVelocity.

3.1.1 Introducing xVelocity

xVelocity is an in-memory database, which means it loads
data in the computer main memory, which is the fastest
storage medium. So, while you save your Power Bl Desktop
file to disk for durable storage, all data in this file is
unpacked and loaded in memory from where all reporting
queries are answered.

Understanding columnar storage

As the original VertiPag name suggests, the storage engine
stores and compresses data vertically by columns to pack as
much data as possible in order to minimize the storage
footprint. Column-based storage fits Bl like a glove because
data is typically analyzed by columns. And, the lower the
data cardinality (that's the more repeating values a column
has), the higher its compression rate is. Figure 3.1 shows a
hypothetical table containing some sales data.

Examining the data, we see that across all rows the Date
column has only two unique values, ProductName has seven,
ProductSubcategory has five, ProductCategory two, and
SalesAmount five. Consequently, the Product Category and
Date columns will compress the most since they have the
most repeating values, while the ProductName column won't
compress as well. Since it's common to have columns with
many repeating values in large datasets, expect a high data
compression ratio (five times or higher). The efficient
compression is the reason why you can pack and analyze
millions of rows on the desktop without running out of
memory.

' Two distinct
values

1/1/2011
1/1/2011
1/1/2011
1/2/2011
1/2/2011
1/2/2011
1/2/2011

| Seven distinct

values

Hitch Rack - 4-Bike

Bike Wash - Dissolver
Mountain-400-W Silver, 38
Mountain-400-W Silver, 40

Road-250 Red, 44
Road-250 Red, 48

Sport-100 Helmet, Red

Five distinct

values

Bike Racks
Cleaners
Mountain Bikes
Mountain Bikes
Road Bikes
Road Bikes
Helmets

Two distinct
values

Accessories
Accessories
Bikes
Bikes
Bikes
Bikes
Accessories

Five distinct
values

k

44.88
2.9733
419.7784
419.7784
1518.7864
1518.7864
12.0278,

Figure 3.1 xVelocity compresses columns with many

repeating values well.

Processing queries
When Power Bl receives a DAX query, its formula engine

parses the query and creates an execution plan. This

execution plan will likely include many queries for data

retrieval that the formula engine sends in parallel to

xVelocity. Think of xVelocity as a highly efficient memory
scanner. For the most part, all it does is scan the column
values loaded in the computer memory. For example, even if
a DAX query asks for sales for a single product, xVelocity

must go through the following steps:

1.Scan the entire ProductName and SalesAmount columns.
2.Cross-join the two columns to find sales for that product.

3.Aggregate SalesAmount depending on the requested
aggregation type (SUM, AVG, or other).

Therefore, xVelocity performs very well when the query
requests a few columns which is typical for data analytics,
such as to summarize sales by product (only two columns
involved). But it might not be that efficient as reports get
more granular and the number of columns and data volumes
increase, such as to produce a detailed report that shows the
customer's first name, last name, email, phone number, and

SO Oon.

The more columns the report requests, the more columns
xVelocity needs to scan and cross join. Although its memory

storage goes a long way to crunch data efficiently, it has its
limits. You might not see much performance degradation
with the few thousand rows in the Adventure Works model,
but with millions of rows it will be probably more efficient to
produce such detail reports directly from a relational
database, such as SQL Server or Oracle, that retrieves data
by rows and not columns. Keep this in mind and choose the
right tool for the reporting task at hand.

3.1.2 Understanding Column Data Types

A table column has a data type associated with it. When
Power Bl connects to the data source, it attempts to obtain
the column data type from the data provider and then maps
it to a data type it supports.

Understanding supported data types
Table 3.1 lists the xVelocity data types (Power Query has a
few more types that don't have equivalents).

Table 3.1 This table shows the column data types supported by
xVelocity.

Query Data Storage Data Description
Type Type
Text String A Unicode character string with a max length of 268,435,456

characters

Decimal Number Decimal Number A 64 bit (eight-bytes) real number with decimal places

Fixed Decimal Fixed Decimal A decimal number with four decimal places of fixed precision useful
Number Number for storing currencies.

Whole Number Whole number A 64-bit (eight-bytes) integer with no decimal places

Date/Time Date/Time Dates and times after March 15t, 1900

Date Date Just the date portion of a date

Time Time Just the time portion of a date

TRUE/FALSE Boolean True or False value

Binary Binary data type Blob, such as file content (supported in Query Editor but not in

the data model)

Reviewing and changing the column data type

To review the column data type in Power Bl Desktop, click the
Data View tab, select the table column, and examine the
"Data type" dropdown in the Modeling ribbon. You can use
this dropdown to change the column data type. Changing the
column data type changes how the data is physically stored

in the model. For example, changing from Decimal Number
to Whole Number will remove decimals. You can always
change the data type back to Decimal Number and reimport
the data to restore the precision.

You should review and change the column data type for the
following reasons:

* Data aggregation - You can sum or average only numeric
columns.

* Data validation - Suppose you're given a text file with a
SalesAmount column that's supposed to store decimal
data. What happens if an 'NA' value sneaks into one or
more cells? The query will detect it and might change the
column type to Text. You can examine the data type after
import and detect such issues.

TIP Although you can perform limited validation in DAX, | recommend you
address data quality issues ideally in the data source. When this is not an option,
tackle them in Power Query because it has the capabilities to remove errors or
replace values. Data should enter your model clean and DAX isn't the right tool to
shape and transform the data.

3.2 Exploring Storage

When you browse the data in Power Bl Desktop (Data View
tab), there is nothing that indicates that data is stored in
columns. In fact, you might be tricked into believing that
data is stored in rows as in a relational database. In this
practice, you'll use the VertiPaqg Analyzer community tool to
gain more understanding about how the data is stored in the
Adventure Works model.

3.2.1 Getting Started with Vertipaq Analyzer

The VertiPaq Analyzer is implemented as an Excel Power
Pivot model. It can collect storage statistics from the three
Microsoft products that use xVelocity: Power Bl, Power Pivot,
and Analysis Services Tabular. The steps that follow are
specific to analyzing storage of Power Bl Desktop models.

Finding how to connect to the model

Recall from Lesson 1 that a background Analysis Services
Tabular instance hosts your Power Bl Desktop model.
Unfortunately, each time you restart Power Bl Desktop, it
creates a new instance that listens on a different network
port. As a first step, you need to determine that port and the
easiest way to do so is to use DAX Studio.

1.0pen Power Bl Desktop and then open the Adventure
Works.pbix file from the \Source\Practice folder.

2.0pen DAX Studio. In the Connect window, choose the
"PBI/SSDT Model" model option and select the Adventure
Works model. Click Connect.

3.0nce DAX Studio connects, look at the bottom status bar
and obtain the server name and port. You should see
something like localhost:55892. That's all you need for the
connection string.

Collecting statistics
Next, configure and run the VertiPaq Analyzer.

1.Download the VertiPaq Analyzer from
https://www.sqglbi.com/tools/vertipag-analyzer/ and unzip it.
For your convenience, | provided the Excel 2013 version in
the \Source\lntro folder.

2.In the Excel Data ribbon, click Manage Data Model to open
the Power Pivot model.

3.In the Power Pivot Home ribbon, click Existing Connections.
Select the SSAS data source and click Edit.

4.In the "Specify a connection string" window, click the Build
button.

5.In the "Data link properties" window, change the Data
Source setting to localhost:<port> and replace <port> with
the actual port number you got from DAX Studio.

6.Expand the "Enter the initial catalog to use" and select the
model name which should be a globally unique identifier
(quid), such as 7a622512-cf0c-4097-a41d-caa62bc88ba4.

7.Press "Test Connection" to test connectivity and if all is
well, press OK. Your connection string should like something
like this:

Provider=MSOLAP.8;Integrated Security=SSPI;Persist Security Info=False;Initial
Catalog=7a622512-cf0c-4097-a41d-caab62bc88ba4;Data
Source=localhost:55892;Update Isolation Level=2

8.Click Save. Back to the "Existing Connections" window,
click Refresh. Power Bl will query specific Analysis Services
data management views (DMV) and load some statistics into
Power Pivot tables.

9.Verify that all tables are successfully refreshed in the status
window and then click Close twice.

10.Finally, close the Power Pivot window to return to Excel.

3.2.2 Analyzing Storage Results

Although it captures much more information than this, |
typically use the VertiPaqg Analyzer to determine which tables
and columns take the most storage.

Practice

https://www.sqlbi.com/tools/vertipaq-analyzer/

The first tab (Tables) in the Excel spreadsheet contains useful
summary information.

1.Click the Tables tab in the VertiPag Analyzer Excel file.

2.Sort the "Columns Total Size" column in descending order
both at table and column levels. Compare your results with
Figure 3.2.

Row Labels -1/ Cardinality Table Size Columns Total Size Data Size Dictionary Size Columns H,

- DimCustomer 18,484 4,402,413 4,388,317 402,584 3,222,477
EmailAddress 18,484 910,045 36,976 725,149
FullName 18,400 744,535 36,976 560,311
CustomerAlternateKey 18,484 673,871 36,976 488,975
AddressLinel 12,797 653,847 36,976 514,455
BirthDate 6,139 404,240 36,976 318,112
Phone 8,890 358,695 36,976 250,551
CustomerKey 18,484 111,056 36,976 120
DateFirstPurchase 1,124 85,600 29,576 46,984
FirstName 670 61,694 24,648 31,638
LastName 375 49,510 21,128 25,342
GeographyKey 336 33,736 21,128 9,872
i 43 2568 17,628

Figure 3.2 Use VertiPaqg Analyzer to analyze the data model
storage.

Analysis

The report shows that the table that takes the most storage
is DimCustomer, which has 18,484 rows (see the Cardinality
column). The Table Size column states that the entire table
occupies 4,402,413 bytes (or around 4.5 Mb). Another good
column to examine is "Database Size %" which shows the
table or column storage size as a percentage of the model's
overall size.

You can also see that EmailAddress takes the most space
because it's a text column that has a lot of unique values.
Internally, xVelocity stores all data types as integers but it
needs to encode text values. If you don't need email address
for analysis, you should remove it to save about seven
percent storage.

If you scroll all the way down and examine the "Table Size"
column again, you can see that the entire model takes about

18.5 Mb, of which 3 MB is just the data size (Data Size
column) and 12 MB (Dictionary Size column) are for
additional runtime structures called dictionaries that Power
Bl uses to decompress and look up data. The model data size
should correspond roughly to the size of the Adventure
Works.pbix file.

Finally, notice that there are many "LocalDateTable" tables
shown in the table list that add more than six megabytes to
the model size. Where do they come from? By default, Power
Bl generates a date table for every date column in every
table it encounters. Power Bl generates these tables so you
don't have to add an explicit date table, but they can surely
bloat your model. If you have a date table as the Adventure
Works model does, you can turn off the hidden date tables
by unchecking the "Auto Date/Time" setting in the File ->
Options and settings -> Options, Data Load tab (under
Current Settings). We'll revisit date tables in the "Working
with Date Tables" lesson.

3.3 Summary

In this lesson, you learned how Power Bl stores data. Power
Bl imports all the data into the xVelocity store: a highly
efficient, in-memory columnar database. The lower the
column cardinality, the higher the chance for that column to
compress well and to take less storage. Currently, Power Bl
itself doesn't include storage statistics, but you can use the
VertiPag Analyzer community tool to analyze the model
storage.

This lesson concludes the introductory part of this book.
Let's dive in DAX and learn how to implement calculated
columns.

PART 2

Calculated columns and tables

You can use DAX to extend your model with custom columns
and tables. In this part of the book, you'll learn how to do
this. Previously, you learned the data modeling fundamentals
and how Power Bl stores data. Next, you'll learn how to
extend your tables with basic and advanced calculated
columns, including columns for looking up, aggregating, and
filtering data.

You'll find how calculated columns are evaluated and how
to change the evaluation context. And you'll discover how
calculated tables can help you implement role-playing
dimensions, date tables, and summarized tables. Along the
way you'll get introduced to important DAX functions for
relating and filtering data.

When going through the exercises, remember to use your
version of the Adventure Works model, which you should
have saved in the \Source\Practice folder. If you need to refer
to the completed exercises and reports for this part of the
book, you'll find them in the Adventure Works model in the
\Source\Part2 folder included in the book source code.

Lesson 4

Understanding Custom
Columns

In the first lesson, | explained that one of the DAX usage
scenarios is to extend tables with calculated columns. You
practiced creating a simple calculated column that
concatenates the customer's first name and last name. This
lesson examines calculated columns in more detail. You'll
learn how they are evaluated and stored.

More importantly, you'll understand when to use and not
to use calculated columns. You'll also learn about other
approaches for creating custom columns. You'll find the DAX
formulas for this lesson in \Source\Part2\Understanding
Calculated Columns.dax.

4.1 Understanding Calculated
Columns

A calculated column is a table column that uses a DAX
formula for its values. This is conceptually like a formula-
based column added to an Excel list, although DAX formulas
reference columns instead of cells.

4.1.1 Understanding Calculated Column Storage

DAX newcomers are often confused about the difference
between calculated columns and measures and where to use
each. To understand calculated columns better, you need to
understand how they are stored and evaluated.

How are calculated columns stored?
When a column contains a formula, the storage engine
computes its value for each row and saves the results. To use
a techie term, values of calculated columns get
"materialized" or "persisted". The difference is that regular
columns import their values from a data source, while
calculated columns are a byproduct of DAX formulas and
they are evaluated and saved after the regular columns are
loaded. Because of this, the formula of a calculated column
can reference regular columns and other calculated columns.
However, a calculated column can't reference any runtime
conditions, such as to obtain the selected value from a report
filter. Again, this is because the DAX formula is evaluated
after the data is loaded but before report queries are
executed. The DAX formula of a calculated column is
evaluated once for each row in the table and from this point
on its values don't change.

NOTE The storage engine might not compress calculated columns as much as
regular columns because they don't participate in the sorting and re-ordering
algorithm that optimizes the compression. So, if you have a large table with a
calculated column that has many unique values, this column might have a larger
memory footprint than a regular column. Use the Vertipaq Analyzer to analyze
the column storage and compare it with the other implementation approaches
you'll learn in this lesson that might result in less storage.

How are calculated columns updated?

If data is imported, Power Bl has everything it needs to
evaluate DAX formulas in calculated columns. If data is not
imported, such as when a table uses DirectQuery to connect
to a SQL Server database, calculated columns are evaluated
on the fly, but not all DAX functions are supported (for
example, time intelligence functions, such as TOTALYTD, are
not supported). Even if the calculated column references
other tables, Power Bl has the data and it doesn't need to
reload the table when the column is first created.

Suppose that the data in the underlying data source has
changed. If data is imported, you need to refresh all or some
of the tables in your model to synchronize them with
changes in the data source. Power Bl updates calculated
columns, as well as relationships and hierarchies, on refresh.
If the calculated column references only columns in the same
table, it will be updated when the home table is refreshed. If
the calculated column references other tables, it will be
updated when each of the dependent tables is refreshed. In
other words, a calculated column is always in sync with the
data that is currently in the model. But you must refresh the
data to update calculated columns. You can't refresh specific
calculated columns. Power Bl refreshes all calculated
columns in a table when it discovers that dependent tables
are updated.

4.1.2 Understanding Evaluation Context

Every DAX formula is calculated in a specific evaluation
context. By "context"”, we'll mean restrictions that are
implicitly and explicitly applied to the formula to operate on
specific data, such as user-defined filters, relationships
between tables, and explicit filters in formulas. DAX
recognizes two context types: row context and filter context.

Introducing row context

Think of the row context as the "current row" in which the
DAX formula is executed. There are two scenarios that result
in a DAX formula evaluated in the row context:

* Evaluating a calculated column - The row context includes
the values from the columns in the current row. Therefore,
the FullName column you implemented in Lesson 1 returns
the full name of the customer for each row in the table.

* Using an iterator function - Several DAX functions iterate
over table rows, such as FILTER, SUMX, ADDCOLUMNS.
When they iterate a row, they create a row context for that
row.

Although the row context doesn't automatically propagate to
related tables, you can use DAX functions, such as RELATED
and RELATEDTABLE, to propagate it in order to select rows in
other tables that are related to the current row, such as to
look up the product cost from another table.

Introducing filter context
The filter context represents the subset of data in which a
DAX formula operates. For example, the running total
measure you implemented in Lesson 1 produces different
results for each report "cell". It does so because Power Bl
evaluates it in the filter context of every cell. Going back to
Figure 1.5, we see that the SalesAmountRT measure
accumulates sales for all years up to and including the year
corresponding to the current cell. In other words, the running
total is evaluated as of a specific year. In this case, the "as
of" year is whatever year corresponds to a given report cell,
but it also could be obtained from a report filter or slicer.
Usually, every report cell has a different filter context that
is inherited from the cell location. However, there are DAX
filter functions, such as CALCULATE that can change the filter
context, and other functions, such as ALL and ALLEXCEPT,
that can ignore it. Irrespective if it's implicit (cell location and
user filters) or explicit (overwritten by DAX functions), the
filter context never affects the row context.

NOTE The DAX documentation differentiates between "query context" (implicit
filters) and "filter context" (explicit filters). To keep things simple, I'll refer to both
types as filter context because they operate in the same way.

The filter context can be empty. For example, the FullName
calculated column has an empty filter context. Because its
formula is evaluated at design time, Power Bl can't pass any
report filters to a calculated column, so there is no implicit
filter context. And there is no explicit filter context because
the FullName formula doesn't modify the filter context.
However, even calculated columns can use DAX functions,
such as CALCULATE, that create or modify a filter context.
Therefore, the calculated column's formula can have row and
filter contexts, just like a measure can have both.

4.1.3 Considering Calculated Columns

No matter how comprehensive your data model is it can
probably benefit from custom columns. Let's see when
calculated columns could be useful and when you would
consider other approaches.

When to use calculated columns

In a nutshell, consider a calculated column when you seek to
extend a table with a custom column, and you prefer to use
DAX. Here are a few good examples for using calculated
columns:

* Aggregate data from another table, such as to calculate
the customer overall sales rank.

* Look up a value from a related table if doing so in DAX is
more efficient than other approaches (more on this in the
next section).

* Create buckets for a range of values in a column, such as
Customer Age (0-20, 21-30, and so on).

TIP Although custom table columns could be created in different ways,
sometimes you don't have a choice but to use DAX. Consider a calculated column
when the expression can be evaluated more efficiently with a DAX formula.

Once the calculated column is in place, it can be used just
like a regular column. For example, you can place the

FullName column in the Table visual's Rows or Columns areas
or use it in a report filter or slicer. You can add a calculated
column to the visual's Values area and sum it up (if it's
numeric) or use Count or Discount Count functions (if it's a
text column). Make no mistake though. Although you can
aggregate a calculated column, it's not a measure. When the
calculated column is aggregated, Power Bl creates an implicit
measure on top of the calculated column, just like it does
when a regular column is added to the Values area.

When not to use calculated columns
To start with, you can't use a calculated column when the
expression depends on some runtime condition, such as
report filters or identity of the interactive user. For example,
you can't use a calculated column to produce year-to-date
(YTD) sales as of a date specified by the user. When the
formula depends on end user selection, you need a measure
and not a calculated column. A DAX formula may work for
both, but the results and computation are very different. The
output from a calculated column is fixed at design time,
while measures are dynamically calculated at runtime.
There are also cases where other implementation
approaches could be preferable, such as when you need
more complicated expressions that might benefit from
custom SQL. This brings us to the next section that discusses
alternative approaches for implementing custom columns.

4.2 Other Options for Implementing
Custom Columns

Using DAX is not the only way to extend tables with custom
columns. You can introduce custom columns outside the data
model, such as by applying custom SQL (if you retrieve data
from a relational database), or by using Power Query.

4.2.1 Evaluating Implementation Options

Table 4.1 compares three approaches for implementing
custom columns, sorted by their proximity to the data model
(more upstream options first). Ultimately, the
implementation choice depends on your skillset and the task
at hand.

Table 4.1 Comparing three common options for implementing custom
columns.

Characteristics SQL Expression Column Power Query Custom DAX Calculated

Column Column
Language SQL (custom query orSQL M DAX
view)
Evaluation Before the data is loaded As the data is loaded in After data is loaded in
in the model the model the model
Require table Yes Yes No
refresh
Level of High Low Medium
transformation
Storage footprint Regular compression Regular compression May not compress well

SQL expression columns

If you load data from a relational database, you can use a
custom SQL query or SQL views to add expression-based
columns. SQL has been evolving for decades, so you'd be
hard pressed to face a data manipulation or shaping
requirement that you can't meet with SQL. If you know SQL,
not only can you apply the skills you already have, but you'll
gain in performance and delegate data crunching to the
relational database, which is what it's designed to do.

REAL LIFE In my consulting practice, | always implement SQL views to "wrap"
the tables in a relational database that | need to import in the data model. Sooner
or later, a requirement pops up for an expression-based column, such as to
derive a higher-level grouping from a list of values. Sometimes, these columns
require more involved lookups and delegating this task to the relational database
is usually the best option.

Power Query custom columns

Using Power Query could be a good choice for implementing
basic custom columns, especially when you're new to DAX.
Power Query has its own expression-based language called
"M", but its user interface can often auto-generate the "M"
code so you might be able to avoid learning yet another
language. Consider Power Query especially for cleansing
column values, such as to remove a currency symbol to
make the column numeric. Power Query can also look up
values from another table (in fact, it supports fuzzy
lookups!), but you need to test how much the Power Query
lookups add up to the table refresh time.

Calculated columns

Implementing a calculated column requires knowledge of
DAX. The formula is evaluated at design time and it doesn't
require reloading the data if it's already imported.
Subsequent table refreshes automatically recalculate the
column. | ranked the transformation capabilities as medium
because it's not as powerful as SQL, although it has functions
that are specifically designed for data analytics.

4.2.2 Performing Arithmetic Operations

Creating a custom column that performs some arithmetic
operations for each row in a table is a common requirement.
Although you can use SQL or Power Query to create such
columns, let's implement another DAX calculated column to
create a LineTotal column that calculates the total amount
for each row in the FactResellerSales table by multiplying the
order quantity, discount, and unit price.

Practice
While working on the formula, let's see what happens when
the formula has a wrong column reference.

1.Besides the New Column ribbon button, another way to add
a calculated column is to use the Fields pane but make sure
that the Data View (or Report View) tab in the navigation
page is selected. In the Fields pane, right-click the
FactResellerSales table and then click "New column®.

2. In the formula bar, enter the following formula and press
Enter. Notice that | purposely omitted the table name from
the column references to show you that calculated columns
don't have to use fully-qualified column names. In addition,
I've intentionally misspelled the OrderQty column reference
to force an error.

LineTotal = [UnitPrice] * (1-[UnitPriceDiscountPct]) * [OrderQty]

Output

This expression multiplies UnitPrice times
UnitPriceDiscountPrc times OrderQty. Notice that when you
type in a recognized function in the formula bar and then
enter a parenthesis "(", AutoComplete shows the function
syntax. Notice that the formula bar shows this error:

"Column 'OrderQty' cannot be found or may be used in this expression”.

In addition, the LineTotal column shows "#ERROR" in every
cell. Because OrderQty doesn't exist, Power Bl underlines
with a red squiggly line in the formula bar.

1.In the formula bar, replace the OrderQty reference with
OrderQuantity as follows:

LineTotal = [UnitPrice] * (1-[UnitPriceDiscountPct]) * [OrderQuantity]
2.Press Enter. Now, the column should work as expected.

3.(Optional) Create a report that summarizes LineTotal by a
field in a related table, such as
DimProduct[EnglishProductCategoryName] (or refer to the
"Arithmetic Operations" visual on the "Understanding CC"
page in \Source\Part2\Adventure Works.pbix.

EnglishProductCategoryName LineTota

Accessories $571,298
Bikes $66,302,382
Clothing $1,777,841
Components £11,799,077
Total $80,450,597

Figure 4.1 The LineTotal calculated column aggregates just
like a reqular numeric column.

Analysis

Runtime formula errors are detected and shown in the
formula bar. In case of a runtime error in a calculated
column, all column values show #ERROR. Logical errors are
not detected and it's up to you to test and fix them.

4.2.3 Using Power Query for Custom Columns

Before we continue our DAX tour, let's quickly demonstrate
how you can implement a FullName custom column in Power
Query that produces the same results as its DAX counterpart.

NOTE This practice requires a connection to the AdventureWorksDW database
because every change you make in Power Query necessitates a table refresh to
apply the change to the model. If you want to follow along, read the instructions
in the book front matter to install and configure this database. If this is too much
trouble, you can choose to ignore this exercise because you won't need the
custom column in the practices that follow.

Practice

Think of Power Query as a layer between the data source
and your data model that you can use to define
transformation steps for shaping and cleansing data. It's
important to understand that Power Query contains only the
definitions of these transformations described in the "M"
language. Assuming that data is imported, the actual
transformation steps happen when the table is refreshed.

1.Right-click the DimCustomer table and then click "Edit
query". The Power Query window opens with the
DimCustomer table selected.

2.Select the "Add Column" ribbon. You can use the Custom
Column button to create a new column, but this requires
some experience in "M". Instead, hold the Ctrl key and select
the FirstName and LastName columns in the preview pane.

3.In the "Add Column" ribbon, expand the "Column From
Examples" and then chose "From Selection". This tells Power
Query to auto-generate the "M" code from an example you'll
provide that involves the selected columns.

Output
Next, you'll type the result you expect.

1.In the new "Columnl" column that appears to the right of
the table columns, double-click the first cell and type the
desired result. In our case, type Jon Yang, because that's the
full name of the first customer (see Figure 4.2).

2.Press Enter. Notice that Power Query auto-fills the rest of
the column values. In addition, Power Query shows you the
"M" code behind the new column at the top of the window.

& Add Column From Examples

Enter sample values to create a new column (Ctrl+Enter to apply).

Transform: Text.Combine({[FirstName], " ", [LastName]})

=zl AB- FirstName V| AB: MiddleName ABc LastName] Merged

1 null Jon v Yang Jon Yang

2 null Eugene E Huang 4
3 null| Ruben null Torres

4 null Christy null Zhu

5 null Elizabeth null Johnson

6 null ' Julio null Ruiz

G

Figure 4.2 Power Query can autogenerate custom columns
from an example you provide.

3.Double-click the column header of the new column (should
be called Merged) and type "FullNamePQ" to differentiate the
new column from the existing FullName calculated column
(column names must be unique within a table). Click OK.

4.Click the Home ribbon and then click the Close & Apply
button to refresh the DimCustomer table.

Analysis

Back to the Power Bl Desktop window, expand DimCustomer
in the Fields pane and notice that it now has the FullNamePQ
column. Unlike the FullName calculated column, FullNamePQ
doesn't have any icon. As far as the data model is
concerned, FullNamePQ is just a regular column. The "M"

formula was applied during table refresh but before the data
was loaded into the data model. As you can see in the Data
View tab, the FullName and FullNamePQ columns have the
same values but their implementation is vastly different.

4.3 Summary

In this lesson, you learned about how calculated columns
work and how their expressions are evaluated. | introduced
you to a very important topic in DAX: the expression
evaluation context, which consist of a row context and a
filter context. The row context typically applies to calculated
columns. The filter context is typically associated with DAX
measures. You also learned about other approaches to
implement custom columns and | provided guidance on
which option to choose.

Lesson 5

Relating Data

If you are a heavy Excel user, you've probably used its
omnipresent VLOOKUP function to look up values from
another cell or to aggregate data in a range. This is a
common task for data modeling too, although you use
relationships and tables as opposed to cells and ranges. This
lesson teaches you how to navigate tables whether physical
relationships exist or not. You'll find the DAX formulas for this
lesson in \Source\Part2\Relating Data.dax.

5.1 Navigating Existing Relationships

Recall from Lesson 2 that relationships are very important to
Power Bl data models. They promote self-service data
exploration without requiring you to create queries that join
tables. If a relationship exists between a dimension table and
a fact table, you can slice and dice the fact data by any field
in the dimension table. Calculated columns can benefit from
existing relationships too to let you "look up" or aggregate
values from a related table. DAX has two functions, RELATED
and RELATEDTABLE, for navigating active relationships.

5.1.1 Navigating Many-to-One Relationships

Suppose you want to calculate the net profit for each row in
the FactResellerSales table. For our purposes, you'll calculate
the line net profit by subtracting the product cost from the
line item total. As a first step, you need to look up the
product cost in the DimProduct table. In other words, for
each row (line item) in FactResellerSales table, you need the
product identifier (ProductKey column), then follow the
relationship to DimProduct, and look up the value in
DimProduct[StandardCost]. This is a many-to-one
relationship from the FactResellerSales table perspective
(notice the * symbol in Figure 5.1)

3 CarrierTrackingNumber
(4 CurrencyKey

1 CustomerPONumber
4 DiscountAmount

" DueDate

[DueDateKey

1 EmployeeKey

1 ExtendedAmount
55 Freight

(1 LineTotal

£ OrderDate

1 OrderDateKey

7 DimProduct

71 ArabicDescription
[l ChineseDescription
™1 Class

1 Color

71 DaysToManufacture
71 DealerPrice

[EndDate

1 EnglishDescription
71 EnglishProductName
[FinishedGoodsFlag
™ FrenchDescription

1 FrenchProductName

£ OrderQuantity 7 GermanDescription
£ ProductKey =1 HebrewDescription
I AP R

Figure 5.1 Looking up the product cost in DimProduct
requires navigating the many-to-one relationship for each
row in FactResellerSales.

Practice

When working on a complicated formula, consider breaking it
up into multiple steps. Let's focus on looking up the
StandardCost first,

1.Make sure the Data or Report View tab is selected in the
navigation pane. In the Fields pane, right-click the Fact-
ResellerSales table and then click "New column®.

2.In the formula bar, enter the following formula and press
Enter:

NetProfit = RELATED(DimProduct[StandardCost])

Output

Power Bl adds a new NetProfit column to DimProduct and
populates it with standard cost for that product that is
recorded in the DimProduct[StandardCost] column.

Analysis

This expression uses the RELATED function to look up the
value of the StandardCost column in the Product table. Since
a calculated column inherits the current row context, this
expression is evaluated for each row. Unfortunately, Power BI
doesn't automatically propagate the row context to related

tables. Hence, you must use RELATED which is designed to
follow a many-to-one relationship and to apply the row
context. RELATED has the following definition:

Related(<column>)

For each row in FactResellerSales, Power Bl constructs a row
context consisting of all column values in that row, including
the ProductKey value. Then, it navigates the
FactResellerSales[ProductKey] -> DimProduct[ProductKey]
relationship, and retrieves the standard cost for that product
from the DimProduct[StandardCost] column.

NOTE RELATED requires a row context and an active relationship to the table
where the column is located. If there is no active relationship, RELATED returns
an error.

To recap, RELATED needs a row context and can be used only
in two cases:

* A calculated column expression.

* |n an extended "X" function, such as SUMX, that iterates
over a table and creates a row context for each row.

Practice

Complete the NetProfit formula to calculate the line net
profit:

1.Change the formula as follows;

NetProfit = [LineTotal] - (RELATED(DimProduct[StandardCost]) *
FactResellerSales[OrderQuantity])

2.In the Fields list, select FactResellerSales[NetProfit]. In the
Modeling ribbon (Formatting group), format the column
values without decimal places.

3.(Optional) Test the NetProfit column, such as to aggregate
it by DimDate[CalendarYear], or refer to the "RELATED
Function" visual on the page "Relating Data" in
\Source\Part2\Adventure Works.pbix, which is shown in
Figure 5.2.

Analysis
While browsing the values in the NetProfit column in the
Data View tab, notice that when the line item's product cost

exceeds the line total, the result is a negative value. This is
the expected result so don't be alarmed.

Year MNetProfit

2013 ($491,870)

Total $470,483

Figure 5.2 The NetProfit calculated column uses the
RELATED function to look up the product standard cost.

Remember that a calculated column can be placed in any
area of the report when it makes sense. In this case,
NetProfit is a numeric column and you can place it in the
visual's Values area to aggregate it. This doesn't make it a
measure though. Instead, Power Bl creates an implicit
measure to summarize the calculated column.

5.1.2 Simplifying the Model Schema

You can use the RELATED function to simplify a snowflake
schema by reducing the number of tables. For example,
unless there is a good reason to keep these tables separate,
you can consolidate DimProduct, DimProductSubcategory
and DimProductCategory. While you can accomplish this with
custom SQL or Power Query, let's use calculated columns.

TIP Although this is a useful exercise for calculated columns, | recommend you
use SQL or Power Query for data shaping. SQL and Power Bl are better suited for
transformation tasks, such as replacing empty values that don't have a match.
Practice

Denormalizing the product schema with DAX requires two

new calculated columns:

1.Add these two columns to DimProduct so that this table has
both product category and subcategory:

EnglishProductSubcategoryName =
RELATED(DimProductSubcategory[EnglishProductSubcategoryName])
EnglishProductCategoryName =
RELATED(DimProductCategory[EnglishProductCategoryName])

2.(Optional) Hide the DimProductSubcategory and
DimProductSubcategory tables. To hide a table, right-click
the table in the Fields pane (make sure that the Data View
tab or Model View tab are selected) and click "Hide in report
view".

Output

The DimProduct table now has the product subcategory and
category as calculated columns that derive their values from
the related tables. As a result, you managed to collapse
three tables into one and thus you simplified the model
schema. Notice that the new columns have empty values
when there is no match.

Analysis

You can use the RELATED function to navigate many-to-one
cascading relationships and look up values from tables that
are not directly related to the home table. Think of RELATED
as a SQL left join between two tables. In the case where
there is no match, it returns an empty value.

5.1.3 Navigating One-to-Many Relationships

Another DAX function, RELATEDTABLE, lets you navigate a
relationship in either direction. This is useful when the
formula needs to follow a one-to-many relationship, that is
from the dimension table to the fact table. It has the
following definition:

RELATEDTABLE(<tableName>)

Like RELATED, RELATEDTABLE propagates the row context.
Because it returns a table with a subset of rows that match
the current row context, you typically need to aggregate the
results if you want to use this function in a calculated
column.

NOTE Although less common, Power Bl also supports relationships with a many-
to-many data cardinality (not to be confused with many-to-many relationships
discussed in the lesson "Many-to-many relationships"), such as between two fact
tables or between tables in different storage modes (imported and DirectQuery).
You can also use RELATEDTABLE to navigate such relationships. For more
information about relationships with a many-to-many cardinality, refer to the

article "Relationships with a many-many cardinality in Power Bl Desktop" at
https://docs.microsoft.com/power-bi/desktop-many-to-many-relationships.

Practice

Suppose you need a calculated column in the DimProduct
table that summarizes the reseller sales from
FactResellerSales for each product: In your first attempt, add
the following calculated column to DimProduct:

ResellerSales = SUM(FactResellerSales[SalesAmount])

Outcome

The DimProduct[ResellerSales] calculated column returns a
repeating value that represents the overall sales across the
entire FactResellerSales.

Analysis
The formula doesn't propagate the row context of the
"current product".

Practice
Change the formula of the calculated column as follows:

ResellerSales = SUMX(RELATEDTABLE(FactResellerSales),
FactResellerSales[SalesAmount])

Outcome

Now the calculated column returns the expected results.
Notice that some products, such as accessories, show no
sales because they are never sold.

1.(Optional) Test the ResellerSales column, such as to
aggregate it by DimProduct[EnglishProductCategoryName],
or refer to the "RELATEDTABLE" visual on the report page
"Relating Data" in \Source\Part2\Adventure Works.pbix, which
is shown in Figure 5.3.

EnglishProductCategoryName ResellerSales

Bikes $66

othing €1
Components $11,799,077
Total $80,450,597

Figure 5.3 The ResellerSales calculated column uses the
RELATEDTABLE function to aggregate related sales.

Analysis

The RELATEDTABLE function transitions the row context from
DimProduct to FactResellerSales in order to filter the sales
transactions for each product. Because it returns a table of
matching rows, the SUMX extended function is used to
iterate row by row over the returned table and summarize
FactResellerSales[SalesAmount]. You can use
COUNTROWS(RELATEDTABLE(FactResellerSales)) to see how
many rows are matched.

Behind the scenes, RELATEDTABLE is a shortcut to the DAX
CALCULATETABLE function. This formula produces the same
result.

ResellerSales = SUMX(CALCULATETABLE(FactResellerSales),
FactResellerSales[SalesAmount])

5.2 Navigating Virtual and Inactive
Relationships

Active relationships are easy to work with and you should
always create and use relationships when possible as they'll
give you the best performance when joining tables. But what
if two tables can't be related or they have an inactive
relationship? Fortunately, DAX has functions to help you.

5.2.1 Looking up Values

You can use the LOOKUPVALUE function to look up a single
value from another table. The LOOKUPVALUE function has
the following definition:

LOOKUPVALUE(<result_columnName>, <search_columnName>, <search_value>
[, <search_columnName>, <search value>]...[, <alternateResult>])
LOOKUPVALUE searches and returns the value in a column
that meets one or more conditions. The search conditions
must result in a single value or multiple (but identical) values
to avoid an error. If no match is found, the function returns a
blank value which you can substitute with another value
specified in the alternateResult argument.

Practice

The DimEmployee table has a SalesTerritoryKey column that
associates a salesperson with a sales territory in the
DimSalesTerritory table. Suppose you want to look up the
assigned country and add it as a column to DimEmployee.
Add a SalesTerritoryCountry calculated column to
DimEmployee with this formula:

SalesTerritoryCountry = LOOKUPVALUE(DimSalesTerritory[SalesTerritoryCountry],
DimSalesTerritory[SalesTerritoryKey], DimEmployee[SalesTerritoryKey])

Output

Most employees are not salespeople and they don't have an
associated sales territory. In this case, the
SalesTerritoryCountry calculated column shows 'NA' because

that's the corresponding country for SalesTerritoryKey of 11.
Otherwise, the column shows the associated country.

LastName SalesTerntoryCountry

Ansman-Wolfe United States

Bacon

222
r F

Barbario N

Figure 5.4 The SalesTerritoryCountry uses LOOKUPVALUE to
look up the country associated with a salesperson.

Analysis

The first argument (DimSalesTerritory[SalesTerritoryCountry)
is the value you want to retrieve. The second argument
(DimSalesTerritory[SalesTerritoryKey]) is the column to
search. The third argument is the search value. It must be a
scalar expression that returns a single value whose type
matches the column to be searched and cannot refer to any
column in the searched table.

5.2.2 Navigating Inactive Relationships

Strictly speaking, the Adventure Works model has an inactive
relationship between the DimEmployee and
DimSalesTerritory tables. However, Power Bl makes it difficult
to use this relationship in calculated columns. For the sake of
completeness, I'll provide the formula, but | recommend you
use LOOKUPVALUE instead to avoid added complexity.

Practice

Unfortunately, RELATED and RELATEDTABLE can't navigate
inactive relationships. The only way to navigate an inactive
relationship is to use the USERELATIONSHIP function, which
has the following definition:

USERELATIONSHIP(<columnNamel>,<columnName2>)

The two columns must be from two different tables related
with an inactive relationship. The first column should be on
the many side of the relationship (foreign key), but Power Bl
will swap the columns if you change the order, so you don't
have to remember this rule. The final formula is:

SalesTerritoryCountry = CALCULATE(
CALCULATE(VALUES(DimSalesTerritory[SalesTerritoryCountry]), DimEmployee),
USERELATIONSHIP(DimEmployee[SalesTerritoryKey],
DimSalesTerritory[SalesTerritoryKey]))

Analysis

The outermost CALCULATE function transitions the row
context to a filter context and uses

USERELATIONSHIP as a second argument. The VALUES
function returns the distinct values in a column, which in this
case is the list of countries in the
DimSalesTerritory[SalesTerritoryCountry] column. However, if
you know that VALUES would return just one value, you can
use it in a formula when a single value is expected.

So that only the associated country is returned, the
formula uses a second CALCULATE function which filters only
the countries (the outcome will be just one country) that
intersects with the DimEmployee table over the inactive
relationship. So, there are two context transitions:

1.From the row context of the current employee to the filter
context over the inactive relationship.

2.A second context transition caused by the nested
CALCULATE.

5.3 Summary

Calculated columns must often retrieve values from other
tables. Use the RELATED and RELATEDTABLE functions to
look up values from tables related with an active physical
relationship. Use LOOKUPVALUE to lookup a single value
when a physical relationship doesn't exist.

Lesson 6
Aggregating Data

One of the most common tasks in data analytics is
aggregating data, such as to summarize the sales for each
product or rank customers based on their overall sales. In
this lesson you'll learn how to aggregate data in calculated
columns. It also revisits the evaluation context in which a
formula is evaluated, and how the context is propagated to
related tables. You'll find the DAX formulas for this lesson in
\Source\Part2\Aggregating Data.dax.

6.1 Aggregating Columns

DAX supports various aggregation functions and Table 6.1
shows the ones that you'd probably use the most. You can
use these functions in both calculated columns (the subject
of this lesson) and measures.

Table 6.1 This table shows the most common aggregation functions in
DAX.

Aggregation Description Extended

Function Function

AVERAGE* Returns the average (arithmetic mean) of all the numbers ina AVERAGEX
column

COUNT* Counts the number of values in a column that contain COUNTX

numbers
DISTINCTCOUNT Counts the number of distinct values in a column

MAX* Returns the largest numeric value in a column, or between two MAXX
scalar expressions

MEDIAN* Returns the median of numbers in a column MEDIANX

MIN* Returns the smallest numeric value in a column, or between MINX
two scalar expressions

RANX.EQ* Returns the ranking of a number in a list of numbers RANKX

SUM* Adds all the numbers in a column SUMX

6.1.1 Understanding Aggregation Functions

DAX "borrows" many aggregation functions from Excel, but
instead of taking cells or ranges, the DAX counterparts
reference table columns. For example,
SUM(FactResellerSales[SalesAmount]) summarizes the
SalesAmount column in the FactResellerSales table.

NOTE Remember that when used in calculated columns, none of these functions
transition the row context into a filter context and they will return nonsensical
results. You need a function that transitions the context, such as

RELATED, RELATEDTABLE, CALCULATE or CALCULATETABLE.

Some of these functions, such as the ones | marked with an
asterisk (*) next to the function name, operate on numeric
values. For example, COUNT expects a column that contains
numbers, dates, or text that can be converted to a number.
However, COUNT also has an "A" counterpart (COUNTA),
which counts values of any data type that aren't empty.

Likewise, MIN finds the smallest value in a column that
contains numbers or dates, whereas MINA can operate on
text values.

Practice

Let's add a calculated column to the DimCustomer table that
shows how many times a customer bought something.
Because each row in FactinternetSales represents an order
line item, you'll overstate the result if you count rows.
Instead, you'll use the DISTINCTCOUNT function to count the
SalesOrderNumber column. In your first attempt, add a
#Sales calculated column to DimCustomer with the following
formula:

#Sales = DISTINCTCOUNT(FactinternetSales[SalesOrderNumber])

Outcome

The formula doesn't produce the expected results. Like the
DimProduct[ResellerSales] column in the previous lesson,
#Sales returns a repeating number representing the distinct
count of SalesOrderNumber across the entire
FactinternetSales table. There are 27,659 sales orders but
that's across all customers.

Analysis

None of the aggregation functions transition the row context
to the related tables. Unfortunately, DISTINCTCOUNT doesn't
have an extended function, such as DISTINCTCOUNTX, that
would allow us to use RELATEDTABLE or CALCULATETABLE,
as you did in the previous lesson with SUMX. This brings us
to the CALCULATE function.

6.1.2 Introducing the CALCULATE Function

CALCULATE is a very important and versatile function,
especially for measures. In fact, this function is so important,
that it will take a few lessons to cover it in enough detail.
Let's start with its definition:

CALCULATE (<Expression> [, <Filter> [, <Filter> [, ... 111)

Understanding evaluation

When used in a calculated column, CALCULATE goes through
the following steps to create the context in which the
expression is evaluated:

1.Evaluates the existing row context. For example, if a
calculated column has a formula that uses CALCULATE, a row
context will be created for each iterated row.

2.Discards the original row context because CALCULATE
requires a filter context.

3.Performs the context transition. For example, when used in
a calculated column, CALCULATE creates a filter context
formed by each value of the table columns in the row that
it's being iterated.

4.Evaluates the filter arguments and overwrites the context if
it encounters one of the following functions:
USERELATIONSHIP, CROSSFILTER, ALL, ALLEXCEPT,
ALLSELECTED, and ALLNOBLANKROW.

5.Applies the other filter arguments.

Practice
Change the #Sales formula as follows:

#Sales = CALCULATE(DISTINCTCOUNT(FactinternetSales[SalesOrderNumber]))

Outcome

The formula works now. For example, #Sales returns 1 for
the first customer (Latasha Suarez). To test, browse
FactinternetSales in the Data View tab, and filter the
CustomerKey column to 11471 (the key value for Latasha).
As an optional exercise, create a visual with
DimCustomer[FullName] and #Sales, as shown in Figure
6.1.

FullMame #5ales
Aaron Allen

Aaron Baker 1
Aaron Campbell

Aaron Collins

Aaron Diaz

Aaron Evans 1

Figure 6.1 The #Sales calculated column counts distinct
orders in the FactinternetSales table.

Analysis

CALCULATE creates a new filter context from all the column
values for the row being iterated.

DISTINCTCOUNT is evaluated in that context so it returns the
number of orders for each customer.

6.2 Understanding Extended
Functions

Besides the aggregation functions that take only a column as
an argument, DAX has extended versions. Going back to
Table 6.1, you can see that several aggregation functions
have extended versions suffixed with "X", such as SUMX.

6.2.1 Understanding Extended Syntax

For example, the SUMX function, which you used in the
previous lesson, has this syntax:

SUMX (<Table>, <Expression>)

The extended versions are iterators, meaning that they
calculate the expression for each row in the table passed as
the first argument.

NOTE As it turns out, the regular aggregation functions are just wrappers on top
of the extended functions. For example,
SUM(table[column]) is internally translated to SUMX(table, SUM([column])).

The extended functions are particularly powerful in measures
because their evaluation context propagates to the table
passed as the first argument. For example, if you have a
Matrix visual with years in the column labels, and product in
the row labels, and then you use a measure with the formula
SUMX(FactResellerSales, [UnitPrice] * [OrderQuantity]), then
each report cell will show the aggregated sales belonging to
the corresponding year and product by calculating the
expression for each sales transaction and then rolling up the
result. Let's understand how this works in more detail.

6.2.2 Understanding Iteration

Consider the following formula:
SUMX(FactinternetSales, [UnitPrice] * [OrderQuantity])

As an iterator, SUMX iterates each row in FactinternetSales
and calculates the expression

[UnitPrice] * [OrderQuantity]. Then it sums up the result in
the filter context of each report cell. If the formula uses
AVERAGEX, it would compute the average over the
expression calculated for each row. Some of the extended
functions take additional arguments. For example, RANKX,
which you'll use in the next practice, has this syntax:

RANKX(<table>, <expression>[, <value>[, <order>[, <ties>]]])

The ties argument can be either Skip (default value) or
Dense. When set to Dense, the function doesn't skip
numbers for tied ranks.

Practice

Suppose you want to rank each customer based on the
customer's overall sales. The RANKX function can help you
implement this requirement. As a first attempt, add a
SalesRank calculated column to DimCustomer as follows:

SalesRank = RANKX(DimCustomer,
SUM(FactinternetSales[SalesAmount]),,,Dense)

Outcome

Unfortunately, the formula returns the same value (1) for
each customer. To fix this issue, use one of the following
formulas:

SalesRank = RANKX(DimCustomer, SUMX(RELATEDTABLE(FactinternetSales),
[SalesAmount]),,,Dense)

SalesRank = RANKX(DimCustomer,
CALCULATE(SUM(FactinternetSales[SalesAmount])),,,.Dense)

As an optional step, create a visual that shows

DimCustomer[FullName], DimCustomer[SalesRank], and
FactinternetSales[SalesAmount] (see Figure 6.2).

FullName SalesRank SalesAmount

a
Nichole Nara
Kaitlyn Henderson

Margaret He

[R)
FrRTY IR Tr T}

Randall Dominguez

Adriana Gonzalez 5 $13.243

Rosa Hu 6 $13,216

Figure 6.2 The SalesRank calculated column ranks each
customer based on the customer overall sales.

Analysis

As RANKX iterates over each row in DimCustomer, it
evaluates the expression passed in the second argument,
which in this case is SUM(FactinternetSales[SalesAmount]).
As an iterator function, RANKX doesn't propagate by default
the row context to the expression. This causes the formula to
evaluate the rank over the same sales amount for each
customer.

To fix this issue, the first formula uses RELATEDTABLE to
transition the row context to a filter context. Because
RELATEDTABLE returns a table, you need to use a function
that takes a table as an argument. The function for summing
values is SUMX. The second formula uses CALCULATE to
transition the context. It uses SUM in the second argument.
Alternatively, you can use SUMX:

SalesRank = RANKX(DimCustomer, CALCULATE(SUMX(FactinternetSales,
FactinternetSales[SalesAmount])),,,Dense)

6.3 Summary

DAX supports various aggregation functions which have their
roots in Excel. Most aggregation functions take a table
column as their only argument. However, DAX provides
extended versions (with "X" suffix) that are more versatile.
Remember that for these functions to work in calculated
columns you must somehow transition the row context into a
filter context, such by using the RELATED or RELATEDTABLE
functions, or by using CALCULATE.

Lesson 7

Filtering Data

DAX formulas often need to apply filters to narrow the
context in which the formula operates. This lesson teaches
you different ways to filter data with the CALCULATE and
FILTER functions, and how to remove filters to expand the
evaluation context. You'll find the DAX formulas for this
lesson in \Source\Part2\Filtering Data.dax.

7.1 Adding Filters

DAX has various functions related to filtering data, including
functions to apply and remove filters, and functions to detect
the filter selection (detecting the filter context is useful for
measures only). Table 7.1 shows the most common filter
functions to apply filters.

Table 7.1 This table shows the most common functions for applying filter
conditions.

Filter Function Description

CALCULATE Evaluates a scalar expression in a context that is modified by specified filter
conditions that can either add or remove filters

CALCULATETABLE Like CALCULATE but evaluates a table expression

EARLIER (avoid) Returns the current value of the specified column in an outer evaluation pass of the
mentioned column. Use variables instead

FILTER Returns a table by applying a filter expression

7.1.1 Using the Filter Function

The FILTER function is one of the most used (and abused)
DAX functions. It has the following syntax:

FILTER (<Table>, <FilterExpression>)

The FILTER function is an iterator. It scans each row in the
table passed as the first argument and check if it meets the
condition specified in the filter expression. The
FilterExpression argument must be a valid DAX Boolean
expression that can include multiple conditions using the
logical operators AND (&&) and OR (|]), such as:

FactinternetSales[OrderDate] <=DATE(2012, 12, 31)
FactinternetSales[OrderDate] <=DATE(2012, 12, 31) ||
FactinternetSales[ShipDate] = BLANK()

FactinternetSales[OrderDate] >=DATE(2011, 1,1) &&
FactinternetSales[OrderDate] <=DATE(2012, 12, 31)

Practice

Let's adds a new calculated column to DimCustomer that
returns the customer's sales for the year 2013. In your first

attempt, you might come up with the following formula:
2013Sales = CALCULATE(SUM(FactIinternetSales[SalesAmount]),

FILTER(FactinternetSales,
FactinternetSales[OrderDate] >= DATE(2013, 1, 1)
&& FactinternetSales[OrderDate] <= DATE(2013, 12, 31)))

NOTE What if you want the formula to be evaluated as of a date specified by the
user, such as by using a report filter or slicer? Remember that calculated columns
can't access runtime conditions, so to meet this requirement you need a measure
and not a calculated column. To emphasize this, the example uses fixed dates.
Output

The 2013Sales column doesn't work as expected.
Specifically, it shows the same value across all customers.
This value corresponds to the sum of SalesAmount for year

2013 across the entire table.

Analysis

As you learned before, the CALCULATE function transitions
the row context to a filter context, causing the SUM function
to evaluate for each customer. However, as a row iterator,
the FILTER function creates a new filter context that includes
the entire FactinternetSales table causing the repeated
values. Change the formula as follows:

2013Sales = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(RELATEDTABLE(FactinternetSales),
FactinternetSales[OrderDate]>=DATE(2013, 1, 1) &&
FactinternetSales[OrderDate]<=DATE(2013, 12, 31)))

Now the formula works as expected. RELATEDTABLE
propagates the row context to FactinternetSales causing the
FILTER function to filter only sales for the iterated row in
DimCustomer. Another way to accomplish the same result
and make the formula more efficient is to use the ALL
function:

2013Sales = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(ALL(FactinternetSales[OrderDate]),
FactinternetSales[OrderDate]>=DATE(2013, 1, 1) &&
FactinternetSales[OrderDate]<=DATE(2013, 12, 31)))

The ALL function removes the filter from the OrderDate

column. The reason why this is more efficient is that the

FILTER function will now iterate only through the OrderDate

values (1,124 versus 60,398 rows in FactinternetSales). To

optimize things even further in this case, use the YEAR

function (returns the year from a date) to replace the two

filter conditions with one:

2013Sales = CALCULATE(SUM(FactIinternetSales[SalesAmount]),
FILTER(ALL(FactinternetSales[OrderDate]),

YEAR(FactinternetSales[OrderDate]) = 2013))

Practice

Assuming ShipDate can be empty, change the formula to

include sales where ShipDate is empty.

2013Sales = CALCULATE(SUM(FactinternetSales[SalesAmount]),

FILTER(ALL(FactinternetSales[OrderDate], FactinternetSales[ShipDate]),

YEAR(FactinternetSales[OrderDate])=2013 || FactinternetSales[ShipDate] =
BLANK()))

Analysis

The OR (]|) operator is used in the FILTER function to filter
where the sales year is 2013 or ShipDate is blank. In DAX,
checking for empty (NULL) values is accomplished by
checking for blank values (like Excel). Or, you can use the
ISBLANK() function which returns TRUE if the value is blank:
2013Sales = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(ALL(FactinternetSales[OrderDate], FactinternetSales[ShipDate]),

YEAR(FactinternetSales[OrderDate])=2013 ||
ISBLANK(FactinternetSales[ShipDate])))

In the case where there are only two AND (or OR) conditions,
you can use the AND and OR functions, as follows:

2013Sales = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(ALL(FactinternetSales[OrderDate], FactinternetSales[ShipDate]),
OR(YEAR(FactinternetSales[OrderDate])=2013,
ISBLANK(FactinternetSales[ShipDate]))))

Note the special use of the ALL function to return the unique
combinations between OrderDate and ShipDate. This
reduces the number of rows that the storage engine needs to
scan.

TIP When you need to filter on a few columns, you could make the formula more
efficient by using ALL(columnl, column2,..) to get the unique combinations
among the columns. Use DAX Studio to check the count of rows from the
following query: EVALUATE ALL(FactinternetSales[OrderDate],
FactinternetSales[ShipDate])

If you get substantially less rows than the total row count in the fact table, it's
more efficient to use ALL. However, as the number of filtered columns increase,
you'll get closer and closer to the cardinality of the entire table and RELATED or

RELATEDTABLE might be a better choice as it makes the syntax shorter for
calculated columns.

Practice

Change the 2013Sales formula to return sales only for the
Accessories product category. This will require joining
FactinternetSales and DimProduct.

2013Sales = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(RELATEDTABLE(FactinternetSales),
(YEAR(FactinternetSales[OrderDate])=2013 ||
ISBLANK(FactinternetSales[ShipDate]))

&& RELATED(DimProduct[EnglishProductCategoryName]) =
"Accessories"))

Create a report that shows side by side
DimCustomer[FullIName] and 2013Sales (see Figure 7.1).

FullName 20135ales

£63.97
$74.08
£14.93

$34.99

$39.98

on Collins $34.99

A

Figure 7.1 The 2013Sales calculated column shows the
customer's sales for year 2013 and Accessories product
category.

Analysis

This formula uses the RELATED function to navigate the
relationship between FactinternetSales and DimProduct to
filter where the DimProduct[EnglishProductCategoryName]
column is "Accessories". Notice that the formula uses the
AND (&&) logical operator.

7.1.2 Using the CALCULATE Function

As explained in the previous lesson the CALCULATE function
takes filter arguments.

CALCULATE (<Expression> [, <Filter> [, <Filter> [, ...111)

Therefore, in many cases you can use CALCULATE instead of
FILTER for a shorter syntax and better performance.

Understanding filter arguments

CALCULATE evaluates the expression passed as the first
argument in a context modified by the filter arguments. The
filter argument can be one of these three types:

* Filter elimination - DAX functions, such as ALL and
ALLEXCEPT, can remove filters.

* Filter restoration - The DAX function ALLSELECTED can
ignore innermost filters but restore outer filters.

* Table expression - Similar to using the FILTER function, you
can use a filter to narrow the context of the expression
evaluation.

Each filter argument acts as an AND condition. For example,
if you have two filter arguments, the filtered results must
match both. Each argument can apply multiple filtering
criteria, but they must use the same column.

Practice

Like the first practice in this lesson, create a new 2013SalesC
column that returns 2013 sales for each customer using the
CALCULATE function:

2013SalesC = CALCULATE(SUM(FactIinternetSales[SalesAmount]),
YEAR(FactinternetSales[OrderDate])=2013)

Analysis

The formula returns the same results as its FILTER
counterpart, but it doesn't need the RELATED function to
transition the row context. It may seem faster because it's
more compact, but internally the formula engine will replace
it with this formula:

2013SalesC = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(ALL(FactinternetSales[OrderDate]),
YEAR(FactinternetSales[OrderDate])=2013))

Just like the FILTER version, the formula will scan the
FactinternetSales[OrderDate] column, so it will be executed
1,124 times (the unique values in
FactinternetSales[OrderDate]).

Practice
Change the 2013SalesC formula to include sales where
OrderDate is empty. Then, replace OrderDate with ShipDate

to include sales where ShipDate is empty.

2013SalesC = CALCULATE(SUM(FactinternetSales[SalesAmount]),
YEAR(FactinternetSales[OrderDate])=2013 ||
FactinternetSales[OrderDate]=BLANK())

2013SalesC = CALCULATE(SUM(FactinternetSales[SalesAmount]),
YEAR(FactinternetSales[OrderDate])=2013 ||
FactinternetSales[ShipDate]=BLANK())

Analysis

Notice that while the first formula works, the second fails
with the error "The expression contains multiple columns,
but only a single column can be used in a True/False
expression that is used as a table filter expression". The
reason for this error is that unlike the FILTER function, a filter
argument in CALCULATE must reference the same column.

NOTE A single filter condition involving two or more columns doesn't work with
CALCULATE. For OR filters, use the FILTER function instead. For a better
performance, consider FILTER (ALL(columnl, column2), <conditions>).

Practice
Extend the 2013SalesC calculated column to include only
sales where product category is accessories.

2013SalesC = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(ALL(FactinternetSales[OrderDate], FactinternetSales[ShipDate]),
YEAR(FactinternetSales[OrderDate])=2013 ||
ISBLANK(FactinternetSales[ShipDate])),
DimProduct[EnglishProductCategoryName] = "Accessories")

Analysis
Recall that CALULATE can take multiple filter arguments that
act as AND filters. While you can include all filter conditions
in a single FILTER function, you might get a better
performance if you use separate AND filters if you need to
filter on multiple columns. This formula uses the FILTER
function for the OR filter as before. Because the product
category filter is an AND filter (filter on the dates and
category), the formula passes it as another filter argument.
Why is this faster? If you use the FILTER function for all
conditions, the formula will scan all the rows in
FactinternetSales. By breaking it into two filters, the formula
will scan 1,124 rows (the FILTER function with the OR

condition), and 158 rows (the number of unique values in the
FactinternetSales[ProductKey] column).

TIP When you need multiple AND filters on different columns, test performance
with a single FILTER function and multiple filters in CALCULATE. The chances are
that multiple filters will perform better with larger tables.

Practice

Change the 2013SalesC formula to return sales for product

categories Accessories or Sales.

2013SalesC = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(ALL(FactinternetSales[OrderDate], FactinternetSales[ShipDate]),
YEAR(FactinternetSales[OrderDate])=2013

|| ISBLANK(FactinternetSales[ShipDate])),
DimProduct[EnglishProductCategoryName] IN {"Accessories", "Bikes"})
Analysis

To keep the syntax shorter, use the IN operator to filter on
multiple values. Notice that the IN operator requires curly
braces to surround the values. Text values need to be

surrounded with quotes.

7.2 Removing Filters

Sometimes, your formula may require removing filters. This
is especially useful for measures, such as to calculate
"percent of total" measures, but you might need to remove
filters in calculated columns too.

7.2.1 Understanding the "ALL" Functions

Table 7.2 shows the most common DAX functions to remove
existing filters.

Table 7.2 These three functions are commonly used to remove filters.

Filter Description
Function

ALL Ignores all filters and returns all rows in table or column.

ALLEXCEPT Ignores all filters and returns all rows in table or column except specified columns that
retain their filters.

ALLSELECTED Removes context filters from columns and rows in the current query, while retaining all
other context filters or explicit filters.

Understanding the ALL function
The ALL function has the following definition:

ALL([<table> | <column>[, <column>[, <column=>[,...]11]1)

It takes either a table (as a single argument) or one or more
columns. When a table is used as an argument, it ignores all
filters and returns all rows in the table. When used with
columns, it removes their filters but retains filters on other
columns in the table. In the previous practices in this lesson,
you used the ALL function to remove active filters from
OrderDate and ShipDate columns.

Understanding the ALLEXCEPT function

This function has the following syntax:

ALLEXCEPT (TableName, <ColumnName> [, <ColumnName=>[, ...]1])

ALLEXCEPT removes active filters from the table passed as
the first argument but retains active filters on the columns
specified as subsequent arguments. It's useful when you

want to avoid specifying many columns in the ALL function.

For example, these two formulas produce the same results
over a table with three columns.

ALL(table, columnl, column?2)
ALLEXCEPT(table, column3)

Understanding the ALLSELECTED function
The syntax of ALLSELECTED is:

ALLSELECTED([<tableName> | <columnName>])

This function takes either a table or a column as a single
argument. ALLSELECTED is typically used for measures to
produce visual totals.

7.2.2 Applying and Removing Filters

Let's practice what we've learned by creating a formula that
finds duplicate values in a table column. This could be useful
to determine which value(s) prevents a column to serve as a
primary key in a dimension table that you want to join to a
fact table. The ProductAlternateKey column in DimProduct
represents the business key that is used in the source
system to identify a product. Because some historical
changes, such as changing the product price, are significant,
the modeler has decided to treat these changes as Type 2
changes. When a change is detected in these columns, a
new row is added to the table for that product. The Status
column is set to "Current" to the latest "version" of the row.
Therefore, ProductAlternateKey may contain duplicate
values.

Practice
In your first attempt, you can come up with the following
formula for the RowCount calculated column:

RowCount = COUNTROWS(FILTER(DimProduct, DimProduct[ProductAlternateKey]
= DimProduct[ProductAlternateKey]))

Outcome

This formula doesn't work and returns the same number
(606) in every row in DimProduct. That's because the FILTER
function iterates over all rows in DimProduct and each row
meets the condition (a column value always equals itself).

Knowing about filter transition, your second attempt could be
to surround the entire formula with CALCULATE only to find
that now the RowCount calculated column returns 1 in each
row. As a consolation prize, you managed to propagate the
row context to DimProduct so that only the "current" product
is filtered. One way to produce the correct results is a two-
step approach:

1.Remember the value of the ProductAlternateKey column for
the current product.

2.Find other rows that have the same value.

Practice
Change the formula as follows:

RowCount = COUNTROWS(FILTER(DimProduct,
DimProduct[ProductAlternateKey] =
EARLIER(DimProduct[ProductAlternateKey])))

This formula works as you can see by expanding the
dropdown in the header of the ProductAlternateKey column.
Most rows have RowCount=1 but there are duplicate rows
where the count is 2 and 3. The EARLIER function retrieves
the outer context for the current row (before the FILTER
function iterates the row). Think of this as the first pass in
the two-step evaluation. However, the EARLIER function
should be avoided because of its complexity and unexpected
side effects. Instead, use a variable that accomplishes the
same result.

RowCount = VAR CurrentProduct = DimProduct[ProductAlternateKey]
RETURN

COUNTROWS(FILTER(DimProduct, DimProduct[ProductAlternateKey] =
CurrentProduct))

Analysis

I'll discuss variables in more detail in the second part of the
book. For now, think of a variable as a constant that is
evaluated once for each row in the row context (once for
each product being iterated). Like EARLIER, the
CurrentProduct variable returns the value of Product-
AlternateKey in that row context.

Practice

Yet, another way to accomplish the same result is to use the
ALLEXCEPT function.

RowCount = CALCULATE (COUNTROWS(), ALLEXCEPT(DimProduct,
DimProduct[ProductAlternateKey]))

Create a report, such as the one shown in Figure 7.2, that
shows DimProduct[ProductKey],
DimProduct[EnglishProductName], and RowCount, to test the
RowCount calculated column.

Figure 7.2 The RowCount calculated column shows the
count of rows with the same ProductAlternateKey.

Analysis

The ALLEXCEPT function removes the filter context for all
columns except ProductAlternateKey. COUNTROWS without
an argument instructs the function to count rows in the
current table, which is the same as
COUNTROWS(DimProduct). COUNTROWS is executed for
each product but it retains the filter context (current
product). The net result is counting rows in the table where
ProductAlternateKey equals the key of the current row.

7.3 Summary

Filtering is an important concept in DAX. DAX has an
assortment of functions for adding or removing filters. |
recommend you rely most on the CALCULATE function
because it has the simplest syntax and it might give you the
best performance. For more complicated filter conditions,
use the FILTER function. Use the ALL, ALLEXCEPT, and
ALLSELECTED functions to remove filters when needed.

Lesson 8
Grouping and Binning Values

Calculated columns are especially useful for grouping and
binning data, such as to analyze customer sales by age
buckets. This lesson starts by showing you the Power Bl built-
in capabilities for grouping and binning. Then it shows you
how to apply your own DAX formulas when you need more
control. You'll find the DAX formulas for this lesson in
\Source\Part2\Grouping and Binning.dax.

8.1 Applying Grouping and Binning

Dynamic grouping allows you to create your own groups,
such as to group countries with negligible sales in the
"Others" category. In addition to grouping categories
together, you can also create bins (also referred to as
buckets or bands) from numerical and time fields, such as to
segment customers by revenue or to create aging buckets.

8.1.1 Implementing Groups

Consider the two charts shown in Figure 8.1. The chart on
the left displays sales by country. Because European
countries have lower sales, you might want to group them
together in the European Countries group, as shown on the
right.

$60M $60M

£ A
el

-:m_.] . - - I | — -:-'\-,-..] . - I
PRIy Sl

United Canada | France United Germany|] Australia United Canada | European | Australia

States Kingdom . States) Countries
Figure 8.1 The second chart groups European countries
together.

Creating a group
Follow these steps to implement the group:

1.Create a Stacked Column Chart with
DimSalesTerritory[SalesTerritoryCountry] in the Axis area and

FactResellerSales[SalesAmount] in the Values area.

2.Hold the Ctrl key and click each of the data categories you
want to group. Currently, only charts support this way of
selecting group members. To group elements in tables or
matrices, expand the drop-down next to the field in the
Visualizations pane (or click the ellipses button in the Field
list), and click New Group.

3.Right-click any of the selected countries and click Group
from the context menu. Power Bl Desktop adds a new
SalesTerritoryCountry (group) field to the DimSalesTerritory
table. This field represents the custom group and it's prefixed
with a double-square icon. Power Bl Desktop adds the field to
the chart's Legend area.

4.In the Fields pane, click the ellipsis (...) button next to
SalesTerritoryCountry (group). Click Rename and change the
field name to European Countries.

Editing a group

To make changes to an existing group:

1.Click the ellipsis (...) button next to the European Countries
field and then click Edit Groups.

2.In the Groups window (see Figure 8.2), you can change
the group name and see the grouped and ungrouped
members. If the "Include Other group" checkbox is checked
(default setting), the rest of the data categories (Canada and
United States) will be grouped into an "Other" group.

Groups X
Mame Eurcpean Countries Field SalesTerritoryCountry
Group type | List ¥
Ungrouped values Groups and members
Australia 4 European Countries
Fana
Canada France
United States United Kingdom
Germany
Include Other group @
OK Cance

Figure 8.2 Use the Groups window to view the grouped
values and make changes.

3.Uncheck the "Include Other group" checkbox so that
Canada and United States show as separate data categories.
Click OK.

a.Back to the report, remove SalesTerritoryCountry from the
Axis area. Add the European Countries field to the Axis area.
Compare your report with the right chart shown in Figure
8.1.

TIP Although Power Bl Desktop doesn't currently support lassoing categories as a
faster way of selecting many items, you can use the Groups window to select and
add values to the group. Instead of clicking elements on the chart, right-click the
corresponding field in the Fields pane and then click New Group to open the
Groups window. Select the values in the "Ungrouped values" (hold the Shift key
for extended selection) and then click the Group button to create a new group.

8.1.2 Implementing Bins

Besides grouping categories, Power Bl Desktop is also
capable of discretizing numeric values or dates in equally
sized ranges called bins.

Understanding binning
Suppose you want to group customers in different bins based
on the customer's overall sales, such as $0-$99, $100-$200,
and so on (see the chart's X-axis in Figure 8.3). This report
counts distinct values of CustomerAlternateKey field (the
business key of the DimCustomer table). This requires
navigating the FactinternetSales[CustomerKey] ->
DimCustomer[CustomerKey] relationship because the
SalesAmount field in the FactinternetSales table will become
the "dimension" while the measure (Count of Customers)
comes from the Customer table.

Lroups

L T e R dtr
o EENN 9 t1 500 £ 000 €7 5
L Dol 31,0 b1, oL LG 3

T L LYY P UL fupm e L LT

Figure 8.3 This report counts customers in bin sizes of $100
based on their overall sales.

Creating the bins
Follow these steps to create the report:

1.In the Model View, if the FactinternetSales[CustomerKey] ->
DimCustomer[CustomerKey] relationship has a single arrow
(cross filter direction is Single), double-click it to open the
Edit Relationship window and change the "Cross filter
direction" drop-down to Both. Consequently, you can filter
data in DimCustomer by fields in FactinternetSales. Click OK.

2.Switch to the Report View tab (or Data View tab). In the
Fields pane, click the ellipsis (...) button next to the

SalesAmount field in the FactinternetSales table and then
click New Group.

3.In the Groups window, change the bin size to 100 (you're
grouping customers in bins of $100). Give the group a
descriptive name, such as SalesAmount (bins), and then click
OK.

4.Add a Stacked Column Chart visualization. Add the
"SalesAmount (bins)" field that you've just created to the
Axis area of the Visualizations pane (you'll be grouping the
chart data points by the new field).

5.Add the DimCustomer[CustomerAlternateKey] field to the
Value area. Expand the drop-down next to the
CustomerAlternateKey field in the Value area and switch the
aggregation to Count (Distinct). Compare your results with
Figure 8.3.

8.2 Creating Custom Groups

Power Bl implements grouping and binning as calculated
columns, but it hides the column formula to avoid breaking
the user interface if you change the formula. However, it
could be interesting to see the actual formula so you can
learn from it but there is no easy way to script a Power Bl
Desktop file.

TIP You can try the approach that | outlined in my "Upgrading Power Bl Desktop
Models to Tabular" blog at https://prologika.com/upgrading-power-bi-desktop-
models-to-tabular/ to script a Power Bl Desktop file. Even easier, if you publish
the Power Bl Desktop file to a Power Bl Premium workspace, you can directly
connect SQL Server Management Studio (SSMS) to it and script the published
dataset.

8.2.1 Analyzing Power Bl Groups and Bins

Power Bl generated two calculated columns:
FactinternetSales[SalesAmount (bins)] and
DimSalesTerritory[European Countries]. Let's examine the
formulas which | obtained by using SSMS to script the
Adventure Works model that | had published to powerbi.com.

Analyzing the binning formula
Let's start with the FactinternetSales[SalesAmount (bins)]
formula as it's easier to understand:

IF(ISBLANK('FactinternetSales'[SalesAmount]), BLANK(),
INT('FactinternetSales'[SalesAmount] / 100) * 100)

This formula uses the IF statement to check if SalesAmount
for the current customer is empty (blank) by using the
ISBLANK function. If this is the case, the BLANK function
returns an empty value. Otherwise, it divides SalesAmount
by 100 to get rid of the last two digits since the bin size you
specified was 100. Then, it uses the INT function to convert
the result to an integer value and removes the decimal
places. Finally, it multiplies the result by 100. So, if the sales
amount is 4,234.34, it will be assigned to the bin with a left
boundary of 4,200.

https://prologika.com/upgrading-power-bi-desktop-models-to-tabular/

Analyzing the grouping formula

And here is the formula behind the European Countries

group.

SWITCH(TRUE,

ISBLANK('DimSalesTerritory'[SalesTerritoryCountry]), "(Blank)",
'DimSalesTerritory'[SalesTerritoryCountry] IN {"France", "United
Kingdom","Germany"}, "European Countries”,
'DimSalesTerritory'[SalesTerritoryCountry])

To avoid multiple nested IF functions, this expression uses

the SWITCH function, which has this syntax:

SWITCH(<expression>, <value>, <result>[, <value>, <result>]...[, <else>])

Like the SELECT CASE statement in SQL, the SWITCH
function takes an expression as a first argument and
compares it to the values passed as additional arguments. If
a match is found, SWITCH returns the result corresponding to
the matched value. Because the values are produced by
formulas, Power Bl uses a handy trick to pass TRUE as the
expression argument, thus causing all conditions to be
evaluated. The first condition checks if the country is blank
and assigns it to a "(Blank)" group if that's the case.
Otherwise, if the country is one of the European countries, it
returns "European Countries". If none of these conditions are
met, the original country name is returned.

8.2.2 Implementing Custom Groups

Power Bl grouping and binning are convenient features, but
they lack in flexibility. For example, you can't configure
specific boundaries. Now that you've seen how Power Bl
generates groups and bins, let's use this knowledge to create
your own groups. As an example, you'll bucket the Adventure
Works customers in age groups, such as "0-20", "21-40", "41-
60", and "61 and above".

Practice
The DimCustomer table doesn't have an Age column. Start
by creating an Age calculated column using this formula:

Age = DATEDIFF(DimCustomer[BirthDate], TODAY(), YEAR)

This formula uses the DATEDIFF function, which computes
the difference between two dates using the interval you
specify as the third argument. Like Excel, the TODAY function
returns the system date without time. If you need the system
time, you can use the NOW function.

Now that we have the Age column, create a new "Age
(groups)" calculated column with this formula:

Age (groups) = SWITCH (TRUE,

[Agel<=20, "0-20",

[Age]>20 && [Agel<=40, "21-40",

[Age]l>40 && [Age]<=60, "41-60",

[Age]>60, "61 and above",

"Other")

Output

The new formula assigns every customer to an age group
depending on the customer's age. To test the calculated
column, create a chart report that has
FactinternetSales[SalesAmount] in the Value area and "Age
(groups)" in the Axis area (see Figure 8.4). Observe that
most sales are contributed by customers in the 41-60 age

group.

44 AN -4

Figure 8.4 This report groups sales by the age groups.
Analysis

Like the formula generated by Power B, the "Age (groups)"
formula uses the SWITCH function to check which group the
customer's age falls in. If none of the conditions are met, the
customer is assigned to the "Other" group.

As an optional practice, use a similar approach to create a
Tier calculated column that assigns each customer to a tier

based on the DimCustomer[SalesRank] calculated column
you implemented before.

8.3 Summary

Calculated columns are one option for implementing custom
groups and bins (the other options are Power Query or
custom SQL). Consider custom groups to meet more
advanced requirements than auto-generated Power BI
groups and bins can provide.

Lesson 9

Implementing Calculated
Tables

Besides calculated columns, Power Bl supports calculated
tables. This lesson starts by explaining what a calculated
table is and when to consider it. Then, it walks you through a
few examples for implementing calculated tables to handle
role-playing dimensions, generate date tables, and improve
performance. You'll find the DAX formulas for this lesson in
\Source\Part2\Calculated Tables.dax.

9.1 Understanding Calculated Tables

If you have used Power Bl Desktop for a while, you've
probably noticed that it's a versatile tool and there are
usually different options to accomplish a given task. For
example, I've already explained that you have at least three
options to implement a custom column: calculated column,
Power Query, and custom SQL. Custom tables are no
exception.

9.1.1 What Is a Calculated Table?

Like a calculated column, a calculated table is a custom table
that's based on a DAX formula. The DAX formula must return
a table, such as by using FILTER, SUMMARIZECOLUMNS,
CALCULATETABLE, or other DAX table-producing functions.
You create a calculated table by using the New Table button
in the Power Bl Desktop Modeling ribbon.

TIP Don't confuse the New Table button in the Modeling ribbon with the Enter
Data button in the Home ribbon. The latter is for creating Power Query tables by
entering explicit values, such as in the case when you need a reference table and
you prefer to enter the column values manually. Once the "Enter Data" table is
imported, it becomes just like a regular table. By contrast, calculated tables are
produced with DAX formulas and you can't enter the data directly. And they don't
have a query behind them.

Understanding storage

In its simplest syntax, you introduce a calculated table by
just referencing an existing table without any modifications,
such as in this example that creates a DimShipDate

calculated table by referencing the DimDate table:
DimShipDate = DimDate

You may think that DAX creates just a shortcut to DimDate
without duplicating the DimDate data. However, behind the
scenes, Power Bl copies the data into a new DimShipDate
table. Specifically, it copies all the columns and their values.
It then compresses the data. Once the formula is evaluated
and the table is created, you can see it in the Fields pane.
You can browse its data in the Data View tab and even add

calculated columns to it. The following restrictions apply to
calculated tables:

* You can't remove columns from calculated tables in the
Fields pane. You need to change the DAX formula to
exclude columns.

* A calculated table doesn't have a query. You need to
change the DAX formula, such as to filter some rows.

* A calculated table can't be explicitly refreshed.

* The data in the calculated table can't depend on runtime
conditions, such as user selection in filters or slicers. Like
calculated columns, the reason for this is that calculated
tables are evaluated and stored before the report is run.

Refreshing calculated tables

Like calculated columns, Power Bl automatically refreshes
calculated tables according to their dependencies to other
tables. For example, the DimShipDate table will be
automatically updated when you refresh the DimDate table.
So, a calculated table is always up to date with the imported
data in the model and there is nothing you need to do to
synchronize it.

Unlike calculated columns, which may not compress so
well, calculated tables compress their columns like native
columns. Specifically, when Power Bl refreshes a calculated
table, it iterates over the rows from the table returned by the
DAX formula just like it does when it refreshes a regular table
(when it iterates over the rows coming from the data
source).

9.1.2 Considering Calculated Tables

Calculated tables can help in certain scenarios but don't
overuse them. Keep in mind these considerations when
you're evaluating calculated tables.

When to use calculated tables

A common scenario for using a calculated table is producing
additional date tables. I've previously said that Power Bl
supports only one active relationship between two tables.

But if you want to let users analyze sales by Ship Date or
Due Date? One option is to clone DimDate. Dimensional
methodology refers to such dimension tables as role-playing
dimensions because the same dimension table plays multiple
roles. You can duplicate tables in DAX, SQL or Power Query.
Like calculated columns, the choice depends on several
factors, such as your skillset and the level of transformations
required.

TIP Speaking of date tables, you can use a calculated table and DAX functions,
such as CALENDAR and CALENDARAUTO, to quickly generate a date table if you
don't have one in your data warehouse database or Excel. The practice in this
lesson demonstrates these two functions.

Another reason to use calculated tables is to simplify or
speed up DAX calculations. For example, you might have a
large Customer table and you want to produce a report that
shows the count of customers who subscribed to your
company's services by month. Instead of querying the
Customer table directly, you can add a calculated table that
summarizes the results.

Lastly, when testing complex DAX formulas, it might be
easier to store the intermediate results in a calculated table
and see whether the formulas work as expected.

When not to use calculated tables

To start with, calculated tables are not a replacement for
complex data transformations. For example, if you need
multiple steps to shape the data, it might be better to do this
in Power Query or SQL. More involved data preparation tasks
might even require external data transformation processes
developed by a Bl pro.

Like calculated columns, calculated tables add up to the
overall refresh time of your data model. And so will
transformations in Power Query. You need to test the refresh
time with different implementation options for implementing
custom tables.

Moving down the list, calculated tables are evaluated and
saved before reports run. Therefore, their DAX formulas can't
evaluate runtime conditions, such as selected values in

filters or slicers. Only DAX measures can evaluate such
conditions.

9.2 Working with Calculated Tables

Now that you know about calculated tables, let's go through
a few exercises to practice common scenarios that could
benefit from them.

9.2.1 Implementing Role-playing Dimensions

Suppose you want to analyze sales by the order ship date.
Recall that both FactinternetSales and FactResellerSales join
DimDate on the OrderDateKey. Since now you need to join
the tables on another column, you have two options to
support this requirement:

* Create measures that navigate inactive relationships - You
can create measures, such as ShipSalesAmount and
ShipOrderQuantity that use the USERELATIONSHIP function
to travel the inactive relationship on ShipDate. This might
be a preferable approach when you want to use the
existing date table exactly as it is. On the downside, it
requires additional measures. The practice in this lesson
demonstrates how to use USERELATIONSHIP.

* Add a DimShipDate table - You can duplicate DimDate and
rename it to ShipDate. You can implement this with a DAX
calculated table, Power Query, or custom SQL.

Practice

Let's add a new DimShipDate table as a DAX calculated
table.

1.In the Modeling ribbon, click New Table.

2.In the formula bar enter the following formula and press
Enter:

DimShipDate = DimDate

3.Power Bl adds a new DimShipDate table to the Fields pane.
4.Create a new inactive relationship
FactinternetSales[ShipDate] -> DimShipDate[Date] (or
FactinternetSales[ShipDateKey] -> DimShipDate[DateKey])

Output

Create a new report for analyzing
FactinternetSales[SalesAmount] by
DimShipDate[CalendarYear].

CalendarYear SalesAmount
a

2011 $6,978,821
2012 $5.801,073
2013 $16,281,620
2014 $297,163
Total $29.358.677

Figure 9.1 This report shows sales grouped by the
CalendarYear column in the DimShipDate calculated table.

Analysis

The DimShipDate table behaves just like any other table. You
can extend the table by adding hierarchies or calculated
columns. You can also hide columns you don't need.

Practice

As a progression from the previous practice, change the
DimShipDate formula to return only ship dates that exist in
the FactinternetSales[ShipDate] column. This requires a more
involved formula:

DimShipDate = FILTER(

ADDCOLUMNS(

CALCULATETABLE(DimDate ,
USERELATIONSHIP(FactinternetSales[ShipDateKey], DimDate[DateKey])),
"RowCount", CALCULATE(COUNTROWS(FactinternetSales)))

, NOT ISBLANK([RowCount]))

Output

Observe that the DimShipDate table now has only 1,124
rows compared to 3,652 rows in DimDate. The rest of the
dates don't exist in FactinternetSales.

Analysis
To understand complicated formulas, it might make sense to
work your way from the innermost formula outward. The
CALCULATETABLE function uses the USERELATIONSHIP
function to navigate the FactlnternetSales[ShipDateKey] ->
DimDate[DateKey] inactive relationship.

Then the ADDCOLUMNS function is used to add (project) a
new column (RowCount) to DimDate that returns count of

rows in FactinternetSales that are related to the iterated row
in DimDate. The RowCount column is a temporary
expression-based column that only exists within the formula.
As you know by now, when the formula uses an iterator
function, such as ADDCOLUMNS, it needs CALCULATE to
propagate the row context. Finally, the FILTER function
removes rows where RowCount is blank.

NOTE Removing rows from a date table may result in gaps that will make it an
invalid date table. Consequently, time calculations and quick measures for time
intelligence won't work. A date table can't have gaps, as | explain in more detail
in the "Working with Date Tables" lesson.

9.2.2 Generating Date Tables

You can use a simple DAX formula to quickly generate a date
table if you don't have one in your data warehouse database.
DAX has two functions for this purpose:

CALENDAR (<StartDate>, <EndDate>)

CALENDARAUTO ([FiscalYearEndMonth])

CALENDAR returns a calculated table with a single "Date"
column containing a consecutive range of dates between the
StartDate and EndDate you specify as arguments.
CALENDARAUTO scans all tables in the model to find the
earliest and latest dates by evaluating all date columns that
are not calculated columns or included in calculated tables.
Then, it calls the CALENDAR function passing these two
dates as arguments.

CALENDARAUTO takes an optional FiscalYearEndMonth
argument to let you specify the last month of your fiscal
year. For example, if the earliest discovered StartDate is
March 15, 2010 and EndDate is April 27, 2019,
CALENDARAUTO(6) returns a date range between March 15,
2010 and June 30, 2020, so you have enough dates until the
end of the fiscal year.

TIP A designated date table in a corporate data warehouse or being available as
a shared Power Bl dataset managed by a data steward is a best practice. Such a
table allows you to incorporate features that are very hard to implement with
Power Query or DAX, such as manufacturing calendars, holiday flags, non-
working days, and others.

Practice

Suppose your company doesn't have a data warehouse and
you're looking for a quick way to generate a date table in
your model. You want your date table to automatically add
rows as new dates appear in the tables, but you want to
avoid spurious dates that are outside a reasonable range
(starting in 2010 and ending in one year from the system
date) and that are probably introduced by data quality
issues. Let's assume that your company's fiscal year ends in
June. Create a new DimMyDate calculated table with this
formula:

DimMyDate = FILTER(CALENDARAUTO(6), YEAR([Date])>=2010 && YEAR([Date])
<= YEAR(TODAY()+1))

As an optional step, add calculated columns for Year and
Month that use the DAX functions YEAR and MONTH
respectively.

Output

The DimMyDate table in the Adventure Works model has a
single column (Date) that contains a consecutive range of
dates between January 1, 2010 and June 30, 2010.

Analysis

Without the FILTER function, CALENDARAUTO(6) returns
dates starting in 1915, but the FILTER function limits the
range starting in year 2010 and ending in one year from the
system date. However, because the maximum date across
all tables is in year 2015, the end date of the calculated
table is June 30, 2015.

9.2.3 Creating Summarized Tables

The DateFirstPurchase column in the DimCustomer records
the date when the customer bought something for the first
time. Let's create a summary table that shows the count of
new customers by month.

Practice
To simplify the formula for the calculate table, start by
adding a calculated column to DimCustomer.

1.Add a MonthJoined calculated column to DimCustomer with
this formula:

Monthjoined = EOMONTH(DimCustomer[DateFirstPurchase], 0)

The EOMONTH function returns the month's end date from
the DateFirstPurchase column without offsetting the date
(the second argument is 0).

2.In the Modeling ribbon, click "New Table" and enter this
formula in the formula bar:

CustomerBase = SUMMARIZECOLUMNS(DimCustomer[Monthjoined],
"CustomerCount", COUNTROWS(DimCustomer))

Monthloined |~ | CustomerCount |~
5/31/13 1141

7/31/13 1052

1/31/12 252
10/31/13 1134

8/31/13 1074

320/1" 154

Figure 9.2 The CustomerBase calculated table summarizes
the count of customers by month based on the date of first
purchase.

Output
The CustomerBase calculated table stores the count of
customers by month (see Figure 9.2).

Analysis

The DAX SUMMARIZECOLUMNS function allows you to group
tables (like the GROUP BY clause in SQL). The formula uses
SUMMARIZECOLUMNS to group DimCustomer by the
MonthjJoined column. Like ADDCOLUMNS,
SUMMARIZECOLUMNS lets you add temporary measures by
specifying the measure name and formula. In this case, the
formula adds a new measure named "CustomerCount" that
counts rows. Because SUMMARIZECOLUMNS is not an
iterator, CALCULATE is not required but the formula will
produce the same results if you include it.

9.3 Summary

A DAX calculated table is an expression-based table that you
can use like any other regular table. You specify a formula
that returns a table and Power Bl takes care of recalculating
the table when dependent tables are refreshed. You can use
calculated tables to implement role-playing dimensions, date
tables, and summary tables.

PART 3

Measures

A data model is rarely complete without important business
metrics. Power Bl promotes rapid personal business
intelligence (Bl) for essential data exploration and analysis.
Chances are, however, that in real life you might need to go
beyond just simple aggregations, such as counting and
summing. Business needs might require you to extend your
model with metrics that go beyond summing and counting
fields. This is where DAX measures come in. They give you
the needed programmatic power to travel the "last mile" and
unlock the full potential of Power BI.

This part of the book teaches you how to implement
measures. After introducing you to measures, it shows you
how to create basic measures. Then, it moves to more
advanced concepts, such as restricting and ignoring the filter
context, as well as grouping and filtering data.

You'll find the completed exercises and reports for this part
of the book in the Adventure Works model that is included in
the \Source\Part3 folder.

Lesson 10
Understanding Measures

Besides calculated columns, you can use DAX to define
measures. Unlike calculated columns, which might be
avoided by using other implementation approaches,
measures typically can't be replicated in any other way -
they need to be written in DAX. DAX measures are very
useful because they typically aggregate data, such as to
summarize a SalesAmount column or to calculate a distinct
count of customers with sales.

This lesson will help you understand how DAX measures
work and what types of measures are supported by Power Bl.
I'll revisit the filter context because it's very important for
measures. You'll also learn how measures compare to
calculated columns and when to use each. You'll find the DAX
formulas for this lesson in \Source\Part3\Understanding
Measures.dax.

10.1 Understanding DAX Measures

I'll define a DAX measure as a runtime calculation that uses a
DAX formula. The most important word in this definition is
"runtime", which means that Power Bl executes the measure
formula when the report runs. Unlike calculated columns,
measures never store their formula results. And this makes
measures much more flexible than calculated columns.

10.1.1 Revisiting Filter Context

Recall that every DAX expression is evaluated in a specific
context which consists of a row context and a filter context.
The row context is typically associated with calculated
columns because their formulas are evaluated for each
iterated row in the home table. On the other hand, the filter
context is the default context for measures but DAX iterator
functions, such as FILTER or SUMX, introduce a row context.

Visualizing filter context
DAX measures are evaluated at runtime for each report cell
as opposed to calculated columns which are evaluated once
for each table row. Moreover, measures are evaluated in the
filter context of each cell, as shown in Figure 10.1.

- ProductCategory »~ X

SalesTerritoryCguntry 2007 2008. Total [EERIEE
Australia Sum(ResellerSales[SalesAmount]) p43,174.77% $1,323,820.73 ™ (Al
Canada 09,709.62] $4,370,334.95 ['

France %13 9 $2,453,178.76

B Accessories

Germany s sy 55820:503:65¢ i ($722,502.00) f§1.543.015.65 _

United Kingdom §1230,91570 $1,08066255 $2,291,575.25 [akdad
United States $8,933,163.90 $7,951,335.55 $16,884,499.45 L KECULY
Total $15,467,184.61 $13,399,243.18 $28,866,427.79 [Resurooss

Figure 10.1 Measures are evaluated for each cell, and they
operate in the cell filter context.

This report summarizes the SalesAmount measure by
countries on rows and by years on columns. The report is

further filtered to show only sales for the Bikes product
category. The filter context of the highlighted cell is the
Germany value of the
DimSalesTerritory[SalesTerritoryCountry] field (on rows), the
2008 value of the DimDate[CalendarYear] field (on columns),
and the Bikes value of the DimProduct[ProductCategory] field
(used as a filter).

Although measures are associated with a table, they don't
show in the Data View's data preview pane as calculated
columns do. Instead, they're only accessible in the Fields
pane. When used on reports, measures are typically added
to the Value area of the Visualizations pane.

Relating filter context to SQL WHERE

If you're familiar with the SQL language, you can think of the
DAX filter context as a SQL WHERE clause that limits the
scope of the query. Going back to the report shown in Figure
10.1, when Power Bl calculates the expression for that cell, it
scopes the formula accordingly, such as to sum the sales
amount from the rows in the FactResellerSales table where
the SalesTerritoryCountry value is Germany, the
CalendarYear value is 2008, and the ProductCategory value
is Bikes.

NOTE Remember that every DAX measure is evaluated in both row and filter
contexts. Simple measure formulas might not have row context but measures
that use iterators do. For example, as SUMX(<table>, <expression>) iterates
through the rows in the table passed as the first argument, it propagates the row
context to the expression passed as the second argument.

10.1.2 Understanding Measure Types

Although Power Bl hides the formula, every time you drop a
field in the Values area of a visual, Power Bl creates an
implicit measure. You can also create explicit measures by
entering your own DAX formulas.

Understanding measure types

Power Bl Desktop supports two types of measures:

* Implicit measures - To get you started as quickly as
possible with data analysis, Microsoft felt that you

shouldn't have to write formulas for basic aggregations.
Any field added to the Value area of the Visualizations
pane is treated as an implicit measure and is automatically
aggregated based on the column data type. For example,
numeric fields are summed while text fields are counted.

* Explicit measures - You'll create explicit measures when
you need an aggregation behavior that goes beyond the
standard aggregation functions. For example, you might
need a year-to-date (YTD) calculation. Explicit measures
are measures that have a custom DAX formula you specify.

When to use measures

In general, measures are most frequently used to aggregate
data. Explicit measures are typically used when you need a
custom aggregation, such as time calculations, aggregates
over aggregates, variances, and weighted averages.
Suppose you want to calculate year-to-date (YTD) of reseller
sales. As a first attempt, you might decide to add a
SalesAmountYTD calculated column to the FactResellerSales
table. But now you have an issue because each row in this
table represents an order line item. It's meaningless to
calculate YTD for each line item.

As a second attempt, you could create a summary table in
the database that stores YTD sales at a specific grain, such
as product, end of month, reseller, and so on. While this
might be a good approach for report performance, it
presents issues. What if you need to lower the grain to
include other dimensions? What if your requirements change
and now YTD needs to be calculated as of any date? A better
approach would be to use an explicit measure that's
evaluated dynamically as users slice and dice the data. And
don't worry too much about performance. Thanks to the
memory-resident nature of the storage engine, most DAX
calculations are instantaneous!

NOTE The performance of DAX measures depends on several factors, including
the complexity of the formula, your knowledge of DAX (and how efficient the
formulas are), the amount of data, and even the hardware of your computer.
While most measures, such as time calculations and basic filtered aggregations,
should perform very well, more involved calculations, such as aggregates over

aggregates or the number of open orders as of any reporting date, will probably
be more expensive.

Comparing calculated columns and measures

Beginner DAX practitioners often confuse calculated columns
and measures. They start with a calculated column (because
it's easier to work with since you see the results), find that it
doesn't produce expected results, then copy the formula into
a measure, and get disappointed that it still doesn't work.
Although calculated columns and measures use DAX, their
behavior and purpose are completely different. Table 10.1
should help you understand these differences.

Table 10.1 Comparing calculated columns and measures.

Calculated Column Measure

Evaluation Design time (before reports are Run time (when reports run)
run)

Typical context Row context (and sometimes filter Filter context (and row context with iterators,
context) such as SUMX)

Storage Formula results are stored No storage

Performance impact Increase refresh time (for Increase report execution time
imported data)

Alternative Possibly Power Query or custom Usually no alternatives

implementation SQL
(unless DAX formulas are
required)

Typical usage Row-based expressions, lookups Custom aggregation, such as YTD, QTD,

weighted averages

The most important difference is that Power Bl automatically
evaluates calculated columns when data is refreshed
(assuming that data is imported) but before reports run.
Therefore, formulas in calculated columns can't access
runtime conditions, such as the identity of the user who runs
the report or filters that are set by the interactive user. If this
is what you're after, you need a measure and not a
calculated column.

From a performance standpoint, the performance of a
calculated column is no different than any other column, but
calculated columns may increase the table refresh time
assuming that data is imported. By contrast, measures
always impact the report execution time because they don't
have storage and their formulas are evaluated at runtime.

Because measures are dynamic, you can change their
home table (the table in which the measure appears in the
Fields pane) at any time. Just click the measure in the Fields
pane to select it. Then, in the ribbon's Modeling tab, use the
Home Table dropdown (Properties group) to change the
table. Switching the measure home table doesn't affect the
measure. By contrast, a calculated column is always bound
to the table where the calculated column is defined.

10.2 Quiz: Calculated Column or
Measure?

Now that you know about measures and how they compare
to calculated columns, let's go through a few brainstorming
exercises to see if we could implement a calculated column
with a measure and vice versa.

10.2.1 Evaluating Calculated Columns as
Measures

You have quite a few calculated columns implemented
already. You'll go through a few of them and check if they
could be converted to measures.

Concatenating fields

In Lesson 1, you implemented a DimCustomer[FullName]
calculated column to concatenate DimCustomer[FirstName]
and DimCustomer[LastName]. Could you implement it as a
measure? The answer is that although you could, you
probably shouldn't. Technically, we can implement it as a
measure whose most basic formula would be:

FullName (m) = SELECTEDVALUE(DimCustomer[FirstName]) & " " &
SELECTEDVALUE(DimCustomer[LastName])

The SELECTEDVALUE function returns the value of a column
when it's filtered down to only a single row. Remember that
measures are dynamic, and their formula output depends on
the actual report. What happens if we have a report that has
the FirstName and LastName columns? The measure will
return the expected result, except that the report will show
all customers. For example, if a Table visual has FirstName,
LastName, FullName, and SalesAmount, the report will show
all customers irrespective if they have sales or not.

TIP By default, all Power Bl visuals remove rows and columns that don't have

data. To change this behavior, expand the dropdown next to the field in whatever
area of the Visualizations pane it's located, and select "Show items with no data".

But what if the report doesn't include FirstName and
LastName columns at all? Then, the measure will return
nothing. In this case, you don't want the measure output to
depend on the data used in the report. So, in this case, a
measure is probably not a good choice.

Relating fields
You implemented FactResellerSales[NetProfit] as a calculated

column with the following formula:

NetProfit = [LineTotal] - (RELATED(DimProduct[StandardCost]) *
FactResellerSales[OrderQuantity])

The tricky part was looking up the product cost from
DimProduct for every row in FactResellerSales. This
calculated column can be converted as a measure. If the
product cost is not available in FactResellerSales, you can
use the following formula:

NetProfit (m) = SUMX(FactResellerSales, [LineTotal] -
(RELATED(DimProduct[StandardCost]) * FactResellerSales[OrderQuantity]))
This works because SUMX is an iterator function. For every
cell in the report, the formula finds the qualifying rows in
FactResellerSales, iterates each row and looks up the product
cost using the
RELATED function. You'll incur a runtime hit for navigating
the FactResellerSales[ProductKey] ->
DimProduct[ProductKey]. This may add up if the DimProduct
table has millions of products, but it will save storage cost for
the calculated column and reduce refresh time.

If the product cost is already available in
FactResellerSales, then the measure formula becomes
simpler and more efficient because you don't need to
navigate relationships. As it turns out, there is a column
TotalProductCost in FactResellerSales which you can use for
this purpose:
NetProfit (m) = SUMX(FactResellerSales, [LineTotal] -
FactResellerSales[TotalProductCost])

TIP Sometimes, the choice between a calculated column and a measure is a
tradeoff between convenience and performance. Often, the best approach is the
middle road. Look up and save specific columns, such as ProductCost, in the fact

table, even if this results in redundant data (product cost is now in both
DimProduct and FactResellerSales). Then, save storage and reduce refresh times
by using measures instead of calculated columns for every formula that involves
product cost. Remember that denormalization is preferred for data analytics even
if it results in duplicated data.

Grouping and binning

In the previous part of the book, you implemented calculated
columns for grouping and binning, such as DimCustomer[Age
(groups)]. Like concatenating fields, such requirements are
more suitable for custom columns (either calculated or

derived in Power Query or custom SQL).

TIP Consider calculated columns when you need to add text-based custom
columns to a table, such as to create custom groups and bins.

10.2.2 Evaluating Measures as Calculated
Columns

Let's turn the tables now and see if measures can be
replaced with calculated columns and if this comes with any
benefits. You don't have many measures implemented yet,
but you already know the cardinal rule when this can't
happen. If the measure formula depends on runtime
conditions, it must stay a measure.

Measures that depend on filters

In Lesson 1, you created a [SalesAmount RT] measure for
producing a running total as of a given calendar year, which
had this formula:

SalesAmount RT = CALCULATE(

SUM('FactResellerSales'[SalesAmount]),

FILTER(

ALLSELECTED('DimDate'[CalendarYear]),
ISONORAFTER('DimDate'[CalendarYear], MAX('DimDate'[CalendarYear]), DESC)))

Like SELECTEDVALUE, the MAX function returns the last year
in the filter context. So, if the user selects years 2010 and
2011 in a report slicer, MAX('DimDate'[CalendarYear]) will
return 2011. The important part is "as of". The measure
formula summarizes sales at runtime across all dates that
are less than or equal to the last date in the "current"” year.
Because calculated columns are evaluated before reports

run, they can't reference selected values. Specifically, the
MAX function in a calculated column will return the last year
across the entire DimDate table, and the formula won't work
as expected.

When measures can be calculated columns

In general, measures might work as calculated columns if
their formula uses columns from just one fact table and they
don't depend on runtime conditions. I've already discussed
that NetProfit can be implemented as both a measure and a
calculated column. And, | already recommended that in such
cases, |I'd gravitate toward measures to reduce the number
of calculated columns and storage and decrease the model
refresh time. However, if the measure performance is
inadequate, it might benefit from "materializing" the entire
formula or a part of it as columns. You need to test because
every model and calculation are different.

10.3 Summary

This lesson should help you understand DAX measures and
how they are evaluated. Unlike calculated columns, which
might be avoided by using other implementation
approaches, measures typically can't be replicated in other

ways - they need to be written in DAX and implemented as
measures (not calculated columns).

Lesson 11

Creating Basic Measures

Let's face it - DAX can be overwhelming for novice users.
Wouldn't it be nice to avoid writing formulas? Of course, it
would. Power Bl supports different techniques to help you
implement basic measures without requiring too much
knowledge in DAX. In this lesson you'll learn how to work
with implicit measures and quick measures, and how to
implement a percent of total measures. You'll find the DAX
formulas for this lesson in \Source\Part3\Basic Measures.dax.

11.1 Implementing Implicit Measures

To recap quickly what you already know, measures are
typically used to aggregate values. Unlike calculated
columns whose expressions are evaluated at design time for
each row in the table, measures are evaluated at runtime for
each cell in the report. DAX applies the filter context, such as
row, column, and filter selections, when it evaluates the
formula.

11.1.1 Understanding Implicit and Explicit
Measures

Recall from the previous lesson that DAX supports implicit
and explicit measures. An implicit measure is a regular
column that's added to the Value area of the Visualizations
pane. An explicit measure has a custom DAX formula.

Comparing measure types
Table 11.1 summarizes the differences between implicit and
explicit measures.

Table 11.1 Comparing implicit and explicit measures.

Criterion Implicit Measures Explicit Measures
Design Automatically generated Manually created or by using Quick
Measures
Accessibility Use the Visualization pane to change the Use the formula bar to change the
aggregation function formula
DAX support Standard aggregation functions only Any valid DAX expression that works

for measures

Implicit measures are automatically generated by Power Bl
Desktop when you add a field to the Value area of the
Visualizations pane. By contrast, to create an explicit
measure, you click the New Measure button in the Modeling
ribbon (or right-click a table in the Fields pane, and then click
"New measure"). Then, like calculated columns, you write the
measure formula in the formula bar. Once the implicit
measure is created, you can use the Visualizations pane to
change its aggregation function. By contrast, explicit

measures become a part of the model, and their formula
must be changed in the formula bar (it can't be changed on
the report).

Understanding limitations of implicit measures

Implicit measures are specific to Power Bl only. Other clients,
such as Excel, Power Bl Report Builder or third-party, don't
support implicit measures. For example, when you use the
Analyze in Excel feature to connect Excel to Power BI, the
Excel PivotTable Fields pane shows only explicit measures.
You can't drag and drop table fields to the pivot's Values
area.

TIP If you plan to support other reporting tools, such as Excel or Tableau, create
explicit measures even for basic aggregations, such as Sales =
SUM(FactinternetSales[SalesAmount]). Otherwise, the user won't be able to
create reports as these tools probably won't support implicit measures.

Implicit measures can only use standard aggregation
functions: Sum, Count, Min, Max, Average, Distinct Count,
Standard Deviation, Variance, and Median. However, explicit
measures can use any DAX formula, such as to define a
custom aggregation behavior like year-to-date.

11.1.2 Working with Implicit Measures

In this exercise, you'll work with implicit measures. This will
help you understand how implicit measures aggregate and
how you can control their default aggregation behavior.

Changing the default aggregation behavior

When you add a column to the Value area, Power Bl Desktop
automatically creates an implicit measure and aggregates it
based on the column data type. For numeric columns Power
Bl Desktop uses the DAX SUM aggregation function. If the
column data type is Text, Power Bl Desktop uses COUNT.
Sometimes, you might need to overwrite the default
aggregation behavior. For example, the CalendarYear column
in the DimDate table is a numeric column, but it doesn't
make sense to sum it up on reports.

1.Make sure that the Data View tab (or Report View tab) is
active. In the Fields pane, click the CalendarYear column in
the DimDate table. This selects the CalendarYear column.

2.In the ribbon's Modeling tab, expand the Default
Summarization drop-down and change it to "Do Not
Summarize". As a result, the next time you use CalendarYear
i_(?n a report, it won't get summarized bx}default.

SRR Shared axis

@ Count of Customers @ SalesAmount

EnglishMonthName

Column series
s52.5ml Add data fields here
Column values

Count of Customers

Line values

A LI o SalesAmount
L — -l

Figure 11.1 This combo chart shows the correlation
between count of customers and sales.

Practice

Suppose you're trying to determine if there's any seasonality
impact to your business. Are some months slower than
others? If sales decrease, do fewer customers purchase
products? To answer these questions, you'll create the report
shown in Figure 11.1. Using the Line and Clustered Column
Chart visualization, this report shows the count of customers
as a column chart and the sales as a line chart that's plotted
on the secondary axis. You'll analyze these two measures by
month.

Let's start with visualizing the count of customers who
have purchased products by month. Traditionally, you'd add
some customer identifier to the fact table, and you'd use a
Distinct Count aggregation function to only count unique
customers. But the FactinternetSales table doesn't have the

customer business key. The business key
(CustomerAlternateKey) is in DimCustomer. Can you count
on the CustomerAlternateKey column in the Customer table?

NOTE Why not count on the CustomerKey column in FactinternetSales? This will
work if the Customer table handles Type 1 changes only. A Type 1 change results
in an in-place change. When a change to a customer is detected, the row is
simply overwritten. However, chances are that business requirements necessitate
Type 2 changes as well, where a new row is created when an important change
occurs, such as when the customer changes addresses. Therefore, counting on
CustomerKey (called a surrogate key in dimensional modeling) is often a bad idea
because it might lead to overstated results. Instead, you'd want to do a distinct
count on a customer identifier that is not system generated, such as the
customer's account number.

1.Switch to the Report View. From the Fields pane, drag the
CustomerAlternateKey column from the DimCustomer table,
and then drop it in an empty area in the report canvas.

2.Power Bl Desktop defaults to a table visualization that
shows all customer identifiers. Switch the visualization type
to "Line and Clustered Column Chart".

3.In the Visualizations pane, drag CustomerAlternateKey from
the Shared Axis area to the Column Values area. Double-click
the field and rename the implicit measure to Count of
Customers.

4.Expand the drop-down in the "Count of Customers" field.
Note that it uses the Count aggregation function, as shown in
Figure 11.2.

T R

Shared axis

Add data fields here

Column series
Remove field

Rename Add data fields here

Move to »
5K Column values

Count (Distinct)

Count of Customers

+/ Count

Show value as » je values

New quick measure Add data fields here

Figure 11.2 Text-based implicit measures use the Count
function by default.

5.A product can be sold more than once within a given time
period. If you simply count on the business key, you might
get an inflated count. Instead, you want to count customers
uniquely. Expand the drop-down next to the "Count of
Customers" field in the "Column values" area and change the
aggregation function from Count to Count (Distinct).

6.(Optional) Use the ribbon's Modeling tab to change the
CustomerAlternateKey default summarization to Count
(Distinct) so you don't have to overwrite the aggregation
behavior every time this field is used on a report.

7.With the new visualization selected, check the
DimDate[EnglishMonthName] field in the Fields pane to add
it to the Shared Axis area of the Visualizations pane.

8.If months sort alphabetically on the chart, select the
DimDate[EnglishMonthName] field in the Fields pane. In the
Modeling ribbon, expand the "Sort By Column" dropdown and
select MonthNumberOfYear. This sorts the
DimDate[EnglishMonthName] field by the ordinal number of
the month. If the chart sorting order doesn't change, remove
DimDate[EnglishMonthName] from the chart and add it
again.

Configuring bidirectional filtering

At this point, the chart might be incorrect. Specifically, the
count of customers might not change across months. The
issue is that the aggregation happens over the
FactinternetSales fact table via the DimDate <-
FactinternetSales -> DimCustomer path (notice that the
relationship direction changes). Furthermore, the cardinality
of the DimDate and DimCustomer tables is Many-to-Many
(there could be many customers who purchased something
on the same date, and a repeating customer could buy
multiple times).

1.Switch to the Model View tab. Double-click the
FactinternetSales -> DimCustomer relationship. In the
Advanced Options properties of the relationship, change the
cross-filter direction to Both.

2.Switch to the Report View tab. Note that now the results
vary by month.

3.Drag the FactinternetSales[SalesAmount] field to the Line
Values area of the Visualizations pane. Note that because
SalesAmount is numeric, Power Bl Desktop defaults to the
SUM aggregation function.

Analysis

Basic reports may not need explicit measures if the Power Bl
standard aggregation functions are enough. The Count of
Customers measure counts distinct customers. Analyzing the
report, you can conclude that seasonality affects sales.
Specifically, the customer base decreases during the
summer. And as the number of customers decreases, so do
sales.

11.1.3 Creating Basic Explicit Measures

As | mentioned previously when comparing implicit and
explicit measures, consider creating explicit measures to
"wrap" basic calculations, such as to summarize or count.
This approach makes your model more useful because users
can use a reporting tool of their choice to create reports.

Practice
Let's create the Count of Customers explicit measure.

1.In the Report (or Data) tab, click the FactinternetSales table
to select it in the Fields pane.

2.In the Modeling ribbon, click New Measure. Alternatively,
right-click the FactinternetSales table in the Fields pane and
then click "New measure". | prefer the latter approach
because it's a sure way to specify the measure's home table.
Otherwise, you have to remember to first select the table in
the Fields pane before pressing the New Measure ribbon
button.

3.Enter the following formula in the formula bar and press
Enter:

Count of Customers = DISTINCTCOUNT(DimCustomer[CustomerAlternateKey])

a.Suppose you want the Count of Customers measure to
show up under the DimCustomer table in the Fields pane.
Click "Count of Customers" in the Fields pane to select it. In
the Modeling ribbon, expand the Home Table dropdown and
select DimCustomer.

5.(Optional) Rename the measure to CustomerCount. Notice
that renaming measures (and columns) doesn't break
existing reports thanks to the Power Bl "smart" rename
feature.

REAL LIFE | recommended in Lesson 1 you come up with a naming convention
and stick to it. What if you want your explicit measures to have the same name
as the base columns, such as SalesAmount? Unfortunately, the measure name
must be unique. | typically rename the base numeric columns, such as
SalesAmountBase, hide them, and then implement wrapper explicit measures.
Output

Add the CustomerCount explicit measure to the Values area
of the chart report and notice that it produces the same
result as it's implicit measure counterpart. As an optional
step, publish the Adventure Works.pbix file to the Power BI
Service (powerbi.com). Use the "Analyze in Excel" feature
(https://docs.microsoft.com/power-bi/service-analyze-in-
excel) to create an Excel pivot table connected to the
published model.

Analysis

The measure's home table is just a metadata operation and
changing it doesn't break existing reports. Excel recognizes
DAX explicit measures, allowing you to create Excel pivot
reports. Excel doesn't support Power Bl implicit measures
(you can't just drag a field in the Values area of the pivot
report).

https://docs.microsoft.com/power-bi/service-analyze-in-excel

11.2 Working with Built-in Measures

As you've started to realize, DAX is a very powerful
programming language. The only issue is that there is a
learning curve involved. At the same time, there are
frequently used measures that shouldn't require extensive
knowledge of DAX. This is where "show value as" and quick
measures could help.

11.2.1 Implementing "Show value as" Measures

A common requirement is to show the measure value as a
percent of the total. Fortunately, there is a quick and easy
way to meet this requirement because Power Bl includes a
feature called "Show value as".

Practice
Let's create a report that shows the percent of total sales
that each country contributes:

1.Add a Matrix visual with
DimSalesTerritory[SalesTerritoryCountry] and FactReseller-
Sales[SalesAmount] fields in the Values area. Add
DimDate[CalendarYear] to the Columns area.

2.Add the FactResellerSales[SalesAmount] field one more
time to the Values area.

3.In the Values area of the Visualizations pane, expand the
dropdown next to the second SalesAmount field and choose
"Show value as". Select "Percent of column total". Compare
your results with Figure 11.3. Notice that the "%CT
SalesAmount"” now shows the contribution of each country to
the column total.

4.(Optional) In the Visualizations pane (Fields tab), double-
click the "%CT Sales Amount" field and rename it to % of
Total Sales.

Values

o Mea ralenlatinn
hLE L.’Ilu!-ﬁ.-\."-

Tl SalesAmount Percent of grand tota

§6,552,073.85 81.24% §17,622549.51
5151335046 18.76% $4822990.20

S R . s T
France $857123.18 New quick measure Percent of row total

Show value as b Percent of column total

$841757.76

Australia

Total §8,065,435.31 100.00% 524,144,429.65

Figure 11.3 The %CT SalesAmount field shows each value
as a percent of the column total.

Analysis

"Show value as" changes an existing measure in place to
show its output as a percentage of a column, row, or grand
total. It doesn't create a new measure. Power Bl implements
this feature internally so don't try to find or change the DAX
formula. If you require more control, I'll walk you through
implementing an explicit measure in the " Changing Filter
Context" lesson that does the same thing but with a DAX
formula you write.

11.2.2 Working with Quick Measures

Before further honing in on your DAX skills, let's look at
another feature that may help you avoid, or at least, help
you learn DAX. Quick measures are prepackaged DAX
formulas for common analytical requirements, such as time
calculations, aggregates, and totals. Unlike "show value as",
quick measures are implemented as DAX explicit measures,
SO you can see and change the quick measure formula.

Practice

In the first lesson, you used a running total quick measure.
Let's practice another quick measure to produce a year-to-
date (YTD) sales report (see Figure 11.4).

Figure 11.4 The SalesAmount (gm) YTD measure
accumulates sales over years and it's produced by the "Year-
to-date total" quick measure.

1.Because the quick measure formula will use the DimDate
table, as a prerequisite you need to mark this table as a date
table. In the "Working with Date Tables" lesson, I'll explain in
more detail why this change is necessary. In the Fields pane,
right-click DimDate and click "Mark as date table". In the
"Mark as date table" window, expand the dropdown and
select the Date column. Click OK.

2.Create a new Table visualization that has
DimDate[CalendarYear], DimDate[EnglishMonthName], and
FactResellerSales[SalesAmount] fields in the Values area.

3.Right-click the FactResellerSales table in the Fields pane
and then click "New quick measure". Alternatively, you
expand the dropdown next to SalesAmount in the Fields pane
(or visual's Values area) and then click "New Quick Measure".

4.In the "Quick measures" window (see Figure 11.5),
expand the Calculation drop-down. Observe that Power Bl
supports various quick measures. Select "Year-to-date total"
under the Time Intelligence section.

Quick measures

Calculation Fields
Year-to-date total v £ Search
Calculate the total of the base value, starting from the
beginning of the current year. Learn more DimCustomer
DimDate

Base value ©®

CalendarQuarter
Sum of SalesAmount » X
CalendarSemester
Date ® CalendarYear
=] Date
Date x DateKey
SpanishMonthName
WeekNumberOfYear
Don't see the calculation you want? Post an idea. OK Cancel

Figure 11.5 Power Bl supports various quick measures to
meet common analytical requirements.

5.Drag the SalesAmount field from the FactResellerSales
table to the "Base value" area.

6.Drag the Date field from the DimDate table to the Date
area. Click OK.

7.Power Bl adds a new "SalesAmount YTD" field to the
FactResellerSales table in the Fields pane.

8.In the Fields pane, rename the "SalesAmount YTD" field to
SalesAmount (gm) YTD.

9.Add the "SalesAmount (gm) YTD" field to the report.

Analysis

Notice the field accumulates sales within each year as it
should. Click the "SalesAmount (gm) YTD" field in the Fields
pane. Notice that the formula bar shows this formula:

SalesAmount (gm) YTD =

IF(

ISFILTERED('DimDate'[Date]),

ERROR("Time intelligence quick measures can only be grouped or filtered by the
Power Bl-provided date hierarchy

or primary date column."),

')I'OTALYTD(SUM('FactReseIIerSaIes'[SaIesAmount]), 'DimDate'[Date])

This formula checks if the DimDate[Date] field is directly or
indirectly filtered in the report by using the ISFILTERED
function. If this is the case, the formula uses the TOTALYTD
function to calculate YTD sales. Unlike "show value as", once
you create the quick measure, it becomes just like any
explicit DAX measure. You can rename it or use it on your
reports. However, you can't go back to the "Quick measures"
dialog. To customize the measure, you must make changes
directly to the formula, so you still need to know some DAX.

11.3 Summary

Power Bl comes with features that can help you avoid writing
DAX for basic calculations. You can aggregate any field on a
report by using any of the standard aggregation functions,
such as sum or average. The "Show value as" feature lets
you implement "percent of total" measures. And you can
create quick measures for some common calculations, such

as YTD.

Lesson 12

Determining Filter Context

Power Bl evaluates measures in the filter context of each
report cell. No matter how you slice and dice the report,
measures produce the correct results, and you don't have to
worry about the internals. Sometimes, however, you many
need to evaluate the filter context, such as to change the
measure aggregation depending on the user selection. This
lesson teaches you how to do just this. You'll find the DAX
formulas for this lesson in \Source\Part3\Determining Filter
Context.dax.

12.1 Understanding Filter Functions

DAX includes several functions to help you obtain filters
applied to the filter context in which a measure operates.
They include functions to help you determine if a column is
filtered or cross-filtered, and functions to obtain the selected
values.

12.1.1 Understanding Filtering and Cross-
filtering

The first three functions (ISFILTERED, ISCROSSFILTERED, and
ISINSCOPE) help you determine if a column is directly or
indirectly filtered.

Determining direct filters

A table column is filtered directly when the column is
explicitly filtered. A column could be directly filtered when it
participates in a report filter or slicer, or when it appears in a
visual. ISFILTERED returns TRUE if any direct filters are
applied on a specific column or any column in a table.

ISFILTERED (<TableNameOrColumnName>)

Determining cross filtering

A column is cross filtered when there is no direct filter on the
column itself but on other columns in the same table or in a
related table. You can use the ISCROSSFILTERED function to
check if a column or table is cross-filtered and this function
has the same definition as ISFILTERED.

Determining hierarchy scope

Finally, the ISINSCOPE (<ColumnName>) function returns
TRUE if the column is filtered directly and if it's a grouping
column for the current row in the report. I'll clarify this with
the report in the next section.

12.1.2 Understanding Applied Filters

Suppose you want to apply different calculations at different
levels of a typical date hierarchy, consisting of Year, Quarter,
and Month levels. As a first step, you need to understand
what hierarchy level is filtered. By "hierarchy", | mean fields
that represent logical 1:M relationships (a year has many
quarters, a quarter has many months), and not necessarily a
Power Bl hierarchy that you can implement in the Fields
pane.

Practice

Start by creating three measures to test how the three
functions affect the filters on the DimDate-
[EnglishMonthName] column. If you reference the
\Source\Part3\Adventure Works, you'll find these measures in
the Filters folder under the DimDate table in the Fields pane.
TIP You can organize the model metadata by placing fields in display folders. To

do so, go to the Model View tab, select the field in the Fields pane, and enter the
display folder name in the "Display folder" property in the field's Properties pane.

Add the following measures to the DimDate table:

Month (Filtered) = ISFILTERED(DimDate[EnglishMonthName])
Month (Cross-filtered) = ISCROSSFILTERED(DimDate[EnglishMonthName])
Month (IsInScope) = ISINSCOPE(DimDate[EnglishMonthName])

Outcome
Let's create a report to see the effect of the three measures.

1.Create a Matrix report with DimDate[CalendarYear],
DimDate[CalendarQuarter], and DimDate-
[EnglishMonthName] fields in the Rows area, and the three
measures in the Values area.

2.Expand the year and quarter levels (see Figure 12.1).

endarYear Month (Filtere Manth (Cross-filtered) Month (IsinScope) 4

2005 False True False
1 False True False
True True True
True True True
2 False True False
April True True True
True True True v

Total False True False

Figure 12.1 This report demonstrates how you can
determine direct and indirect filters applied to a column.

3.Drop a slicer visual on the report and bind it to
DimDate[EnglishMonthName].

4.Select and deselect a month in the slicer and observe the
changes in the visual's Total line.

Analysis

Month (Filtered) returns True only when the
EnglishMonthName is explicitly filtered. This can happen
when the current report cell is on a report row that has the
month, or when a slicer or filter applies a filter to this
column. Month (Cross-filtered) returns True when any column
from the DimDate table is on the report or explicitly filtered.
However, ISCROSSFILTERED would return False if the report
includes columns from other tables.

Month (IsinScope) returns identical results as Month
(filtered) if no direct filter is applied to EnglishMonthName.
However, when this column is filtered by the slicer,
ISFILTERED returns True in the Total line, while ISINSCOPE
returns False in the Total line. Therefore, ISINSCOPE is useful
when you need to overwrite the measure formula for the
report totals. Using ISFILTERED to check for report totals is
not reliable as it changes depending on the user-specified
filters, so you should use ISINSCOPE instead.

12.2 Getting Selected Values

Now that you know how to determine the filter context, the
next step will be to obtain the selected values. For example,
this could be useful to determine the report date that the
user has selected in a report slicer, or to determine the start
and end range of the user selection. DAX offers several ways
to get the selected values and has introduced even more
functions to simplify this task. Next, we'll review the most
popular functions to obtain a single selected value and range
limits (in the case of selecting multiple values).

12.2.1 Working Single-Value Filters

If you expect a single value from the filter context, you can
use the functions SELECTEDVALUE or VALUES.

Checking for a single value

You can use the HASONEVALUE function to determine if a
column has been filtered down to a single value as a result of
direct or indirect filters (another function HASONEFILTER
checks only for direct filters). HASONEVALUE is typically used
with the IF statement. For example, the following measure
checks if the FactinternetSales[SalesOrderNumber] column is
filtered down to a single value, and if this is the case, it
constructs a link that includes the order number.

IF (HASONEVALUE(FactinternetSales[SalesOrderNumber]), "http://prologika.com?
OrderNumber=" &
VALUES (FactIinternetSales[SalesOrderNumber]))

Getting the value

The formula uses the VALUES function. Recall that when the
column is filtered down to one value, VALUES returns that
single value; otherwise you'll get an error. To simplify
checking for single values, DAX has another function called
SELECTEDVALUE.

SELECTEDVALUE (<ColumnName> [, <AlternateResult>])
This function is a shortcut to:

IF(HASONEVALUE(<ColumnName >), VALUES(<ColumnName >),
<AltnernateResult>)

You might think you can shorten the above formula by using
SELECTEDVALUE:

SELECTEDVALUE(FactinternetSales[SalesOrderNumber])

However, this formula will return an empty value when the
customer hasn't ordered anything, causing the formula to
produce a link with no order number for every customer on
the report. So, you'd probably still need to check if you have
a filter selection before you do something with it, so the
formula with the IF statement is a better option.

12.2.2 Working with Multi-value Filters

What if the user has filtered multiple values or selected a
date period and you want to get the first or last date? When
numeric values are filtered, you can use the MIN function to
get the first selected value and the MAX function to get the
last selected. The following measure (BOP stands for
"beginning of period") returns the first filtered date:

BOP = MIN (DimDate[Date])
In the case of filtering dates, you can also use the FIRSTDATE

and LASTDATE functions. The following measure achieves
the same result:

BOP = FIRSTDATE (DimDate[Date])
For non-numeric values, you can use the FIRSTNONBLANK

and LASTNONBLANK functions. For example, the following
measure returns the last filtered product category.

SelectedCategory = LASTNONBLANK(DimProduct[EnglishProductCategoryName],
TRUE)

12.3 Working with Filter Selection

Let's put what you've learned in practice and create
measures that react to filters applied by the end user
running the report. In the first exercise, you'll create a link
that navigates the user to a web page and passes the
"current" order number. The second exercise teaches you
how to overwrite the measure aggregation across a
hierarchy.

12.3.1 Creating Links

Consider the report shown in Figure 12.. This report
displays customer's sales and allows the user to click a link
to navigate the user to another system, such as to see the
order details.

FullName derDate SalesOrderMumber SalesAmount Orderlink

navigates to another web page and passes the order
number.

Practice
Start by creating a measure to construct the link.

1.Add the OrderLink measure to FactinternetSales with the
following formula:

OrderLink = IF (HASONEVALUE(FactinternetSales[SalesOrderNumber]),
"http://prologika.com?0OrderNumber=" & VALUES
(FactinternetSales[SalesOrderNumber]))

2.Add a Table visual and add DimCustomer[FullName],
FactinternetSales[OrderDate] (if it shows the date hierarchy,
expand the dropdown to OrderDate in Values area and select

OrderDate to ignore the hierarchy),
FactinternetSales[SalesOrderNumber],
FactinternetSales[SalesAmount], and the
OrderLink measure.

3.In the Fields pane, click the OrderLink field to select it. In
the Modeling ribbon, expand the Data Category drop-down
and select Web URL. The link is now clickable, but it might
not be desirable to show the URL.

4.(Optional) With the Table visual selected, select the Format
tab in the Visualizations pane, expand the Values area, and
then turn on the "URL icon" slider. This replaces the link with
an icon.

Analysis

HASONEVALUE returns True for every row in the report
because the visual includes the SalesOrderNumber field. But
the filtered field doesn't have to be in the visual or directly
filtered in a report filter or slicer. If the filter context can
narrow down the field to one value, HASONEVALUE will return
True and the link will still work. As an optional step, remove
the SalesOrderNumber field from the visual. The OrderLink
field will now show empty values for customers who
submitted multiple orders on the same date.

12.3.2 Implementing Aggregates Over
Aggregates

You face a difficult requirement. Management has requested
a complicated aggregation for counting customers. At a level
lower than calendar year, such as quarter, month, and date,
the measure must return the distinct count of customers.
However, at the year level, it must return the average of the
customer count at the quarter level. This scenario is
commonly referred to as "aggregate over aggregate".

Practice
Change the CustomerCount measure formula as follows:

CustomerCount = IF (

ISFILTERED (DimDate[Date]) || ISFILTERED (DimDate[EnglishMonthName]) ||
ISFILTERED (DimDate[CalendarQuarter]),

DISTINCTCOUNT (DimCustomer[CustomerAlternateKey]),

AVERAGEX (

ADDCOLUMNS (

SUMMARIZE (DimDate, DimDate[CalendarQuarter]),

"CustomerDCount", CALCULATE (DISTINCTCOUNT (
DimCustomer[CustomerAlternateKey]))

),
[CustomerDCount]))

Output
Create a report to test the measure:

1.Add a Matrix visual. Add DimDate[CalendarYear] and
DimDate[CalendarQuarter] to the Rows area, and
CustomerCount to the Values area.

2.Right-click any year on the report and click Expand -> All.
Compare your results with Figure 12.3.

Calendaryear
-

2011 ' 554
1 438

2012 ;;;
Figure 12.3 The CustomerCount measure computes a
simple average over the year's quarters.

Analysis
The formula checks if the filter context is at a date, month,
or quarter level. If that's the case, the measure returns the
distinct count as the original measure. Otherwise, the
formula uses the AVERAGEX function. Notice that you must
check for lower hierarchy levels first because ISFILTERED
returns TRUE at any level. The first argument is the
summarized DimDate table at the CalendarQuarter level.
Then, the formula uses ADDCOLUMNS to add the
CustomerDCount column that computes the customer
distinct count but at the quarter level.

The net effect is that for each year, SUMMARIZE produces
a table with four rows (one for each quarter) and two
columns: CalendarQuarter and AverageOfCustomers. Then,
AVERAGEX computes a simple average over the projected

column "CustomerDCount". Because ADDCOLUMNS is an
iterator, CustomerDCount needs CALCULATE to transition the
row context into a filter context.

NOTE The formula can use just SUMMARIZE to add CustomerDCount without
requiring ADDCOLUMNS and CALCULATE. However, using ADDCOLUMNS is better
from a performance standpoint. | discuss aggregation functions (SUMMARIZE,
SUMMARIZECOLUMNS, and ADDCOLUMNS) in more detail in the "Grouping Data"
lesson.

12.4 Summary

When you implement measures you often need to evaluate
the filter context. Use the DAX functions ISFILTERED,
ISCROSSFILTERED, and ISINSCOPE to determine if a column
is filtered directly or indirectly. Use HASONEVALUE,
SELECTEDVALUE, and VALUES when the column is filtered
down to a single value.

Lesson 13

Working with Variables

We'll take a short break from measure formulas to introduce
DAX variables. Variables can help you simplify your DAX
formulas, make them more efficient, and get around some
annoying DAX limitations. This lesson starts by explaining
how variables work and then walks you through exercises to
practice variables. You'll find the DAX formulas for this lesson
in \Source\Part3\Working with Variables.dax.

13.1 Understanding Variables

Like variables in programming languages, a DAX variable
stores the result of a formula to reuse it later. Unlike
programming languages, however, once a DAX variable is
calculated, its value doesn't change. So, think of a DAX
variable more as a constant than a storage location that can
be changed at any time. Although this sounds somewhat
limiting, DAX variables are very useful.

13.1.1 Defining Variables

You define a DAX variable inside the formula of a measure or
a calculated column. You use the special VAR keyword for the
variable declaration.

VAR <name> = <expression>

Understanding syntax

The name of the variable can't have delimiters, such as
single quotes or square brackets, which also means that it
can't have spaces. The variable expression can be any valid
DAX expression that returns a scalar value or a table. You
can define multiple variables in a formula. Consider this
measure formula that calculates the year-over-year
percentage variance:

YoY% =

VAR Sales = SUM (FactResellerSales[SalesAmount])

VAR SalesLastYear = CALCULATE (SUM (FactResellerSales[SalesAmount]),
SAMEPERIODLASTYEAR (DimDate[Date]))

RETURN

IF (NOT ISBLANK(Sales) && NOT ISBLANK(SalesLastYear), DIVIDE (Sales -
SalesLastYear, Sales))

This formula defines two variables:

* Sales - This variable computes the current sales for the
selected period. For example, the report shows sales by
year, the Sales variable returns the sales for each year.

* SalesLastYear - This variable calculates the sum of sales
for the same period in the previous year.

When the formula includes variables, it must also include a
RETURN statement, which is followed by a formula that
returns the result from the measure or calculated column
(calculated columns can also use variables). In this case, the
expression uses the IF operator to check if both variables
return non-blank values and to perform a safe divide using
the DIVIDE function (to avoid a division by zero if the current
year's sales are zero). When the report is run, DAX will
substitute the variables in the measure formula with their
calculated values.

NOTE As it stands, DAX doesn't support global variables, such as a variable that
is declared once and reused in multiple DAX expressions and calculated columns.
Therefore, although this may lead to redundant variable declarations, you must
declare the same variable in every formula you plan to use it.

Understanding the variable evaluation context

Variables are evaluated where they are declared (not in the
formula that uses them), and their evaluation context can't
be overwritten. To make the formula simpler, you might
attempt to rewrite it as follows:

YoY% =

VAR Sales = SUM (FactResellerSales[SalesAmount])

VAR SalesLastYear = CALCULATE (Sales, SAMEPERIODLASTYEAR (
DimDate[Date]))

RETURN

IF (NOT ISBLANK(Sales) && NOT ISBLANK(SalesLastYear), DIVIDE (Sales -
SaleslLastYear, Sales))

The idea here is to reuse the Sales variable when computing
the last year's sales in the SalesLastYear variable.
Unfortunately, the formula always returns zero. This is
because Power Bl has already computed the value of the
Sales variable at the point of its declaration and its context
can't be further overwritten. That's why it's useful to think of
variables as constants. You can't treat them as measures and

use CALCULATE to overwrite their evaluation context.

13.1.2 Why Use Variables?

You can implement measures and calculated columns
without variables. However, you should evaluate your

formulas and use variables when it makes sense. Let's go
through the potential benefits.

Simplifying syntax

As you can see from the YoY% formula, variables can help
you simplify the formula syntax and make it more intuitive. If
you don't use variables, you must repeat expressions:

YoY% = IF (NOT ISBLANK(SUM (FactResellerSales[SalesAmount])) &&

NOT ISBLANK(CALCULATE (SUM (FactResellerSales[SalesAmount]),
SAMEPERIODLASTYEAR (DimDate[Date]))),

DIVIDE (SUM (FactResellerSales[SalesAmount]) - CALCULATE (SUM (
FactResellerSales[SalesAmount])

, SAMEPERIODLASTYEAR (DimDate[Date])), SUM (
FactResellerSales[SalesAmount])))

This code is difficult to read. Granted, instead of variables,
you can refactor this year's sales and last year's sales as
separate measures. This would be a good approach if these
measures are useful on their own. But using variables can
also improve performance, which brings us to the next

benefit.

Improving performance

As | mentioned, variables are evaluated once. When the
query optimizer encounters a variable, it optimizes the query
plan because it knows that it must evaluate the variable only
once in a given evaluation context. This results in a faster
execution plan when the same expression appears multiple
times in a formula.

Working around DAX limitations

DAX has its own share of idiosyncrasies that can humble
both novice and experienced users. Consider a common
example where a measure attempts to return sales for the
last date in the Date table (the last date filtered in a filter or
a slicer). What makes this common is that many real-life
calculations require measures that are calculated as of the
user-specified date ("as of" date).

Sales=CALCULATE(SUM(FactResellerSales[SalesAmount]),
MAX(DimDate[CalendarYear]))

As simple and logically correct the measure is, it fails with
the error "A function ‘MAX’ has been used in a True/False

expression that is used as a table filter expression. This is
not allowed." This is what the documentation states about
this error:

"The filter expression, MAX('‘DimDate'[CalendarYear])
attempts to return the largest numeric value in the
CalendarYear column. However, in context of the measure
expression, it cannot be passed as a table filter expression to
the CALCULATE function, causing an error."

This is an example where documentation has left some
ground for improvement. First, the MAX function doesn't
return a table but a scalar value. Second, the CALCULATE
function can take filters. The actual issue is that DAX
surrounds the MAX formula with a hidden CALCULATE and it's
ambiguous in what context the maximum date should be
evaluated.

To be consistent with the way filters propagate, it should
be in the filter context outside of CALCULATE, but in the row
context of the as-of date, which becomes a filter context with
the MAX formula. But this is not what you would expect, so
DAX fails safely with the error. The workaround suggested by
the documentation is to filter the DimDate table and pass it
as a table filter to calculate. This requires ignoring the filter
context on the DimDate table, only to overwrite it later with
the "as of" date.

Sales=CALCULATE(SUM(FactResellerSales[SalesAmount]),

FILTER(ALL(DimDate[CalendarYear]), [CalendarYear] =
MAX(DimDate[CalendarYear])))

A better solution is to use a variable. This example uses an
EOP (End of Period) variable to return the last date:

Sales=

VAR EOP = MAX(DimDate[CalendarYear])

RETURN

CALCULATE(SUM(FactResellerSales[SalesAmount]), [CalendarYear] = EOP)
Because the EOP variable is evaluated where it’'s declared,
there is no hidden context and the formula works.

Unfortunately, DAX doesn't support global variables, so you

need to include this variable in every measure that
references the end of the period.

13.2 Practicing Variables

Now that you know about variable fundamentals, let's
practice different usage scenarios where variables could be
helpful. The next exercises demonstrate how variables can
help you simplify formulas, improve performance, and work
around DAX complexities and limitations.

13.2.1 Calculating Variances

In this exercise, you'll implement YoY% calculation without
and with variables to calculate the percent variance of
FactResellerSales[SalesAmount].

Practice
Add the following two measures to FactResellerSales:

SalesAmount YoY% (slow) =

IF (

NOT ISBLANK (SUM (FactResellerSales[SalesAmount]))
&& NOT ISBLANK (

CALCULATE (

SUM (FactResellerSales[SalesAmount]),
SAMEPERIODLASTYEAR (DimDate[Date])

)

),
DIVIDE (

SUM (FactResellerSales[SalesAmount])

- CALCULATE (

SUM (FactResellerSales[SalesAmount]),
SAMEPERIODLASTYEAR (DimDate[Date])
),
SUM (FactResellerSales[SalesAmount])
)

)

SalesAmount YoY% =

VAR Sales =

SUM (FactResellerSales[SalesAmount])
VAR SaleslLastYear =

CALCULATE (

SUM (FactResellerSales[SalesAmount]),
SAMEPERIODLASTYEAR (DimDate[Date])

)
RETURN

IF (
NOT ISBLANK (Sales) && NOT ISBLANK (SalesLastYear),
DIVIDE (Sales - SalesLastYear, Sales)

)

Output

To test the measures, add a Table visual with
DimDate[CalendarYear] and the two measures, as shown in
Figure 13.1.

CalendarYear SalesAmount YoY% (slow) SalesAmount YoY%

2011 97.31% 97.31%

2012 35.47% 35.47%

2013 16.03% 16.03%
Figure 13.1 Both measures produce the same results.
Analysis

Both measures produce the same results. However,
[SalesAmount YoY%] is easier to read. Moreover, it's faster.
Using the techniques discussed in the "Queries" part of this
book to analyze the query performance with DAX Studio (you
can also use the Power Bl Desktop Performance Analyzer,
which | demonstrated in the first lesson), | obtained two sets
of statistics (see Figure 13.2).

[SalesAmount YoY%] (statistics shown in the right half) is
almost twice as fast as its non-variable counterpart.
Specifically, it generates only seven queries to the storage
engine (versus 13) and its overall execution time is 42 ms
(versus 64). Although in this case the difference is
milliseconds (the Adventure Works model has only a few
thousand rows across all tables), it should be more
pronounced with more involved calculations and larger data
volumes.

Total SE CPU Total SE CPU
64 ms 16 ms 42 ms 0 ms
x1.0 x0.0
FE M SE FE M sE

48 ms 16 ms 34 ms

2.0% 25.0% 81.0%

8 ms

e _-
SE Queries SE Cache SE Queries SE Cache
13 3 7 1

+ A4 20
I4.2%

Figure 13.2 Performance statistics shows that variables
reduce the query execution time almost in half.

13.2.2 Implementing Filter Expressions

In the lesson "Filtering Data", you saw how a variable can be
used as a substitute for using the EARLIER function in a
calculated column. Let's now see how variables can help you
work around some of the DAX limitations. Next, you'll
implement a measure that returns the inception to date (ITD)
sales. The SalesAmount ITD measure returns sales from the
earliest date with data until the end date of the current
period.

Practice

Attempt to add the following measure to FactResellerSales:
SalesAmount ITD =

CALCULATE (

SUM (FactResellerSales[SalesAmount]),

FactResellerSales[OrderDate] <= MAX (DimDate[Date]),

ALL (DimDate)

)

This measure doesn't work. Specifically, when you press
Enter to commit the formula, Power Bl Desktop shows the
error "A function ‘MAX’ has been used in a True/False
expression that is used as a table filter expression. This is
not allowed." Change the formula as follows to fix it:

SalesAmount ITD =

VAR EOP = MAX (DimDate[Date])
RETURN

CALCULATE (

SUM (FactResellerSales[SalesAmount]),
FactResellerSales[OrderDate] <= EOP,
ALL (DimDate))

Output

As an optional step, add the SalesAmount ITD measure to
the report you produced in the previous exercise (see Figure
13.3).

Analysis
The formula uses a variable EOP that returns the end of the
period selected on the report. This avoids the error. The ALL

(DimDate) filter removes the current filter as a result of the
FactResellerSales[OrderDateKey] -> DimDate[Date]
relationship.

CalendarYear SalesAmount YoY% (slow) SalesAmount YoY% SalesAmount ITD

2010 $489,329
2011 97.31% 97.31% $18,682,131
2012 3547% 3547% $46,875,763
2013 16.03% 16.03% $80,450,597
2014 $80,450,597

a1 oA A s fan arn Fam

Figure 13.3 The SalesAmount ITD measure sums sales from
the earliest date until the end of the period.

13.3 Summary

DAX variables help you simplify the formula syntax, improve
performance, and work around issues with the evaluation
context. Consider variables whenever they could be
beneficial, such as to avoid repeating expressions in a

formula.

Lesson 14
Changing Filter Context

In the "Filtering Data" lesson, you learned how you can
manipulate the filter context when implementing calculated
columns. This lesson builds upon this knowledge, but it
focuses on the measure specifics. First, I'll show you how to
reduce the filter context by applying filters and navigating
inactive relationships. Then, I'll show you how to ignore
existing filters. You'll find the DAX formulas for this lesson in
\Source\Part3\Changing Filter Context.dax.

14.1 Overwriting the Filter Context

To briefly revisit what has been covered already, measures
operate in a specific filter context, which is affected by the
cell location on the report and additional filters applied to the
measure. You must use the CALCULATE function to overwrite
or ignore the filter context. If there is a mother of all DAX
functions for measures, CALCULATE will be it. You won't go
far with measures if you don't know CALCULATE.

14.1.1 Revisiting CALCULATE for Measures

Recall from Lesson "Aggregating Data" that CALCULATE has
this definition:
CALCULATE (<Expression> [, <Filter> [, <Filter> [, ... 111)

Besides the expression passed to the first argument,
CALCULATE takes one or more filter arguments and they can
filter columns or tables. Each filter is treated as an AND
condition. The order of the filter arguments doesn't matter.

NOTE While the order of the arguments doesn't matter, their internal evaluation
is a different story. Remember that filters from ALL, ALLEXCEPT, ALLSELECTED,
and USERELATIONSHIP have a higher precedence than other filter arguments. In
other words, regular filter arguments can't overwrite the effect of these functions
because they expand the filter context.

You can apply multiple (AND or OR) filter conditions to the
same column. To filter different columns, you must provide
multiple filter arguments, typically one for each column you
need to filter (which might give you a better performance
anyway). More complicated filter conditions, such as OR
conditions involving different columns, require the FILTER
function. | also showed you in the previous lesson that when
the filter argument references an aggregation function, such
as MAX, you can avoid the error by using a variable.

Practice

Add a measure "Revenue by Top Tier Customers" to
FactinternetSales that returns the sum of Fact-
InternetSales[SalesAmount] for customers where the value

of the DimCustomer[SalesRank] column is less than or equal
to 100.

Profit by Top Tier Customers = CALCULATE(SUM(FactinternetSales[SalesAmount]),
DimCustomer[SalesRank] <= 100)

Output

Add a Table visual and bind it to DimCustomer[FulName] and
the new measure. Sort by "Profit by Top Tier Customers" in
descending order and compare your results with Figure

14.1.

FullName 3-':-1“. by Top Tier Customers

Nichole Nara ' $13,295
Kaitlyn Henderson $13,294

Margaret He $13,269

Randall Dominguez $13,266

Adriana Gonzalez $13,243

Rosa Hu $13.216

Brandi Gill $£13,196

1 She 173
Figure 14.1 This report shows top-ranked customers and
their overall sales.

Analysis
Because the measure needs to filter on a column, the
formula uses CALCULATE with a filter argument. Since the
formula doesn't require an iterator function, such as SUMX or
FILTER, it doesn't use RELATED. In fact, using RELATED will
give you an error "The column DimCustomer[SalesRank]
either doesn't exist or doesn't have a relationship to any
table available in the current context".

You can specify a more advanced filtering condition on the
same column. For example, the following formula filters
customers with a sales rank between 80 and 100.

Profit by Top Tier Customers = CALCULATE(SUM(FactinternetSales[SalesAmount]),
DimCustomer[SalesRank] >= 80 && DimCustomer[SalesRank] <= 100)

Practice

Change the "Profit by Top Tier Customers" to return only
customers in Germany or France. All three of these formulas
meet this requirement:

Profit by Top Tier Customers = CALCULATE(SUM(FactinternetSales[SalesAmount]),
DimCustomer[SalesRank]<=100, DimSalesTerritory[SalesTerritoryCountry] =

“France" || DimSalesTerritory[SalesTerritoryCountry] = "Germany")

Profit by Top Tier Customers = CALCULATE(SUM(FactinternetSales[SalesAmount]),
DimCustomer[SalesRank]<=100,

OR (DimSalesTerritory[SalesTerritoryCountry] = "France",
DimSalesTerritory[SalesTerritoryCountry] = "Germany"))

Profit by Top Tier Customers = CALCULATE(SUM(FactinternetSales[SalesAmount]),
DimCustomer[SalesRank]<=100,

DimSalesTerritory[SalesTerritoryCountry] IN {"France", "Germany"})

Analysis

Because now you need to filter on a different column, you
must pass another filter argument to CALCULATE. The
following formula produces an error "This expression
contains multiple columns, but only a single column can be
used in a True/False expression that is used as a table filter
expression" because it attempts to filter on two columns in
the same filter argument.

Profit by Top Tier Customers = CALCULATE(SUM(FactinternetSales[SalesAmount]),
DimCustomer[SalesRank]<=100 && DimSalesTerritory[SalesTerritoryCountry] IN
{"France", "Germany"})

You can also use the FILTER function to filter on multiple
columns in a single filter expression, but the syntax gets
more complicated and probably less efficient than using
CALCULATE with multiple filter arguments.

Profit by Top Tier Customers = CALCULATE(SUM(FactinternetSales[SalesAmount]),
FILTER(

FactinternetSales, RELATED(DimCustomer[SalesRank])<=100 &&
RELATED(DimSalesTerritory[SalesTerritoryCountry]) IN {"France", "Germany"})

)

TIP As a best practice, use CALCULATE with multiple filter arguments to filter on
multiple columns when AND (&&) filter conditions are needed. You'll get a shorter
syntax and probably better performance.

14.1.2 Navigating Inactive Relationships

Power Bl relationships are the foundation of ad-hoc analysis
because users don't have to create custom queries to join
tables. But existing Power Bl limitations don't allow
relationships everywhere in the model, forcing you to
inactivate some relationships. These relationships are still
useful because the CALCULATE filter arguments can navigate

inactive relationships programmatically using the
USERELATIONSHIP function.

Practice

Add a ShipSalesAmount measure that calculates the sum of
FactinternetSales[SalesAmount] using the
FactinternetSales[ShipDateKey] -> DimDate[DateKey]
inactive relationship.

ShipSalesAmount = CALCULATE(SUM(FactinternetSales[SalesAmount]),
USERELATIONSHIP(FactinternetSales[ShipDateKey], DimDate[DateKey]))

Output

Create a Table report with DimDate[CalendarYear],
FactinternetSales[SalesAmount], and
FactinternetSales[ShipSalesAmount], as shown in Figure

14.2.

CalendarYear SalesAmount ShipSalesAmount
2010 43,421
2011 $7,075,526 $6,978,821
2012 $5,842,485 $5,801,073
2013 $16,351,550 $16,281,620
2014 $45,695 $297,163
Total $29,358,677 $29,358,677

Figure 14.2 This report compares sales by order date and

ship date.

Analysis

USERELATIONSHIP forces the measure to navigate the
FactinternetSales[ShipDateKey] -> DimDate[DateKey]
inactive relationship instead of the default
FactinternetSales[OrderDateKey] -> DimDate[DateKey]
active relationship. In other words, the ShipSalesAmount
measure analyzes sales by the date the order was shipped.
The equivalent SQL statement would be:

select CalendarYear, SUM(SalesAmount)

from FactinternetSales fis

left join DimDate d on fis.ShipDateKey = d.DateKey
group by d.CalendarYear

14.2 Removing Filters

I've previously introduced you to DAX functions for ignoring
the filter context in calculated columns (ALL, ALLEXCEPT,
ALLSELECTED). You can also use these functions as filter
arguments to CALCULATE to implement measures. This
allows you to implement measures that require a modified
filter context, such as a measure for implementing percent of
total.

14.2.1 Implementing Percent of Total

In the lesson "Creating Basic Measures", | showed you how to
use the Power Bl "Show value as" built-in feature to quickly
create a percent of total measures. However, the issue was
that you can't access and modify its formula. Next, I'll show
you how to implement a similar explicit measure in case you
need more control over the formula.

Practice
Follow these steps to add a PercentOfTotal measure to
DimSalesTerritory:

1.Make sure that the Data View (or Report View) is selected.
In the Fields pane, right-click the DimSalesTerritory table and
click "New measure".

2.In the Formula field, enter the following formula and press

Enter:
PercentOfTotal = DIVIDE (SUM(FactResellerSales[SalesAmount]),
CALCULATE (SUM(FactResellerSales[SalesAmount]), ALL(DimSalesTerritory)))

3.In the Fields pane, select the
DimSalesTerritory[PercentOfTotal] measure. In the Formatting
section of the ribbon's Modeling tab, change the Format
property to Percentage with two decimal places.

Output

Add a Matrix visual with
DimSalesTerritory[SalesTerritoryCountry] on rows,
DimDate[CalendarYear] on columns, and the

FactResellerSales[SalesAmount] and
DimSalesTerritory[PercentOfTotal] measures in the Values
area (see Figure 14.3).

CalendarYear 2010 2011

galesTerritoryCountry SalesAmount PercentOfTotal SalesAmount PercentOfTotal
Australia

Canada $115,361 23.58% $3,602,561 19.80%
France $97,496 0.54%
Germany

United Kingdom $80,687 0.44%
United States $373,968 76.42% $14,412,059 79.22%
Total $489,329 100.00% $18,192,803 100.00%

Figure 14.3 The custom PercentOfTotal measure shows the
contribution of the country sales to the overall sales.

Analysis

To avoid division by zero, the expression uses the DIVIDE
function, which performs a safe divide and returns a blank
value when the denominator is zero. The nominator formula
calculates the sales for the "current" country (determined by
the cell filter context). For example, the measure in the cell
next to Canada will return the Canada sales.

The denominator uses the CALCULATE function to
overwrite the filter context. The formula passes
ALL(DimSalesTerritory) as a second argument in the
CALCULATE function to force the evaluation of
SUM(FactResellerSales[SalesAmount]) across all countries
(and across all values of any other column in
DimSalesTerritory).

14.2.2 Counting Pending Orders

Let's implement a measure that counts pending orders. The
order is pending (unfulfilled) when it's placed but not yet
shipped as of the report date. In other words, the measure
needs to count orders where the report date is between the
order date and ship date.

Practice
Add the PendingOrdersCount measure to FactlnternetSales
with the following formula:

PendingOrdersCount =

VAR EOP = MAX (DimDate[Date])

RETURN

CALCULATE (

DISTINCTCOUNT (FactinternetSales[SalesOrderNumber]),
FactinternetSales[ShipDate] >= EOP,

FactinternetSales[OrderDate] <= EOP

, ALL(DimDate)

)

Output

Create a Matrix report with DimDate[CalendarYear],
DimDate[EnglishMonthName], and DimDate[Date] in the
Rows area and the PendingOrdersCount measure in Values

(see Figure 14.4).

CalendarYear PendingOrdersCount

= 2010 14
—] December 14
12/29/2010 5
12/30/2010 g
12/31/2010 14

= 2011 59

Figure 14.4 The PendingOrdersCount measure count orders
where the report date is between OrderDate and ShipDate.

Analysis

The EOP (end of period) variable returns the last date in the
current time period. For example, for year 2010 EOP returns
December 31, 2010. However, if you expand to January
2010, EOP returns January 31, 2010. Then the formula
calculates the distinct count of the SalesOrderNumber
column using the DISTINCTCOUNT function, where EOP is
between the order date and ship date.

The ALL function ignores the filter context by the
FactinternetSales[OrderDateKey] -> DimDate[Date] active
relationship. If you don't ignore it, the report will produce the
same results at the month level, but it will understate the
pending order count at the date level. That's because only
orders whose order date falls in the current period will be
evaluated. However, you might have an order that was
placed outside the current date period but not shipped yet.
Hence, it's important to ignore the active relationship to
DimDate.

14.2.3 Nesting Measures

Lastly, | want to finish this lesson with a best practice when it
comes to measures that overwrite filters. It's common to
have measures that depend on other measures but overwrite
their context. For example, the insurance industry typically
requires measures such as Count of Claims, Count of Open
Claims, Count of Closed Claims, and so on. To reduce
maintenance effort, you should chain measures together
where new measures piggyback on existing measures.

Practice

In the lesson "Creating Basic Measures", you implemented a
CustomerCount measure that counted customers who placed
orders on the Adventure Works website. This measure had a
rather complicated formula that applied different
aggregations across different levels of the date hierarchy.
Suppose you need another measure that counts customers
who are professionals (their occupation is Professionals).
Instead of repeating the entire formula, you can use the
following formula:

CustomerCount (pros) = CALCULATE([CustomerCount],
DimCustomer[EnglishOccupation] = "Professionals")

DAX supports an alternative and shorter syntax when the
first argument of CALCULATE is an existing measure:

[measure] (filter, filter)

Using this syntax, you can rewrite the formula as follows:

CustomerCount (pros) = [CustomerCount] (DimCustomer[EnglishOccupation] =
"Professionals")

Analysis

Avoid duplicating formulas. Instead, build upon existing
measures by adding or removing filters. If you follow this
best practice, you can change the formula in one place, and
all dependent measures will inherit the changes. For
example, if the requirements change and all measures that
count customers need to count now active customers, you
can change only the base CustomerCount measure.

14.3 Summary

CALCULATE is the bedrock of measure formulas. CALCULATE
is a very versatile function but it can be overwhelming to
understand. This lesson demonstrated how you can use
CALCULATE to narrow or expand the filter context.

Lesson 15
Grouping Data

Sometimes, you might face a requirement that calls for
grouping data. For example, in the lesson "Determining Filter
Context" you've implemented an aggregate-over-aggregate
measure that produces different results across levels in a
date hierarchy. This lesson goes into more detail of how to
group data before you can calculate metrics on the
aggregated results. It also teaches you how to add
expression-based columns when using the grouping
functions. You'll find the DAX formulas for this lesson in
\Source\Part3\Grouping Data.dax.

15.1 Understanding Grouping
Functions

CALCULATE (with possibly FILTER) should help you tackle
most of your measure requirements. Grouping data is
typically required to implement aggregate-over-aggregate
measures, such as a measure that aggregates at a month
level in one way but in a different way at a year level. As a
relatively new language, DAX has had its fair share of
growing pains and this is no more evident than in its
grouping functions. I'll quickly go through these functions
and provide recommendations about their usage. Table
15.1 compares at a glance the three grouping functions that
I'll discuss and lists their main characteristics.

Table 15.1 DAX supports various grouping functions.

Function Notes Pros Cons

ADDCOLUMNS/ Returns a summary table with optional Less restrictions Avoid extended columns

SUMMARIZE extended columns. Retains column in SUMMARIZE (use
values with no data. ADDCOLUMNS)

GROUPBY Creates a summary of the input table Can aggregate Requires an extended "X"
grouped by the specified columns. over function for extended
Excludes column values with no data. = extended columns columns

SUMMARIZE Creates a summary table for the Best performance Doesn't always work in

COLUMNS requested totals over a set of groups. modified filter context

Excludes column values with no data.

15.1.1 Understanding SUMMARIZE

SUMMARIZE is the DAX earliest function for grouping data.
As its name suggests, SUMMARIZE summarizes (groups) a
table by one or more columns. It can add optional measures
to extend the return table.

Understanding SUMMARIZE syntax
SUMMARIZE has the following definition:

SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]...[,
<name>, <expression>]...)

The first argument must be a table or an expression that
returns a table, such as FILTER. Next, you must specify at

least one column from the table or a related table that you
want to group by. For example, the CustomerCount measure
used SUMMARIZE to group the DimDate table by the
CalendarQuarter column.

SUMMARIZE (DimDate, DimDate[CalendarQuarter])

The result is a table with a single column (CalendarQuarter)
containing the unique values in CalendarQuarter.
SUMMARIZE acts as a SQL left join and retains columns with
no data. The same result could be achieved with VALUES(
DimDate[CalendarQuarter]) with the small difference that
SUMMARIZE doesn't sort the grouped column values in any
way while VALUES returns them sorted (as they will appear
on a report).

EVALUATE
ADDCOLUMNS (

VALUES (DimDate[CalendarQuarter]),

"CustomerDCount", CALCULATE (DISTINCTCOUNT (
DimCustomer[CustomerAlternateKey]))

)

Understanding extended columns

SUMMARIZE can also add one or more expression-based
columns by using the name-expression syntax. These
columns are sometimes referred to as extended columns.
They are typically custom measures whose formulas
aggregate data (like SQL GROUP BY clause with aggregates,
such as SUM). For example, you can add a CustomerDCount

column that counts distinct customers for each quarter.

SUMMARIZE (DimDate,
DimDate[CalendarQuarter]),
"CustomerDCount", DISTINCTCOUNT (DimCustomer[CustomerAlternateKey])

The equivalent SQL query would be:

select d.CalendarQuarter, COUNT (distinct CustomerAlternateKey)

from DimDate d left join FactinternetSales fis on fis.OrderDateKey = d.DateKey
left join DimCustomer c on fis.CustomerKey = c.CustomerKey

group by d.CalendarQuarter

Understanding ADDCOLUMNS

The problem with extended columns and SUMMARIZE is that
they don't perform well, and Microsoft can't "fix" it without

potential side effects. For best performance, add extended

columns with ADDCOLUMNS that wraps SUMMARIZE instead
of adding them in SUMMARIZE:

ADDCOLUMNS (

SUMMARIZE (DimDate, DimDate[CalendarQuarter]),

"CustomerDCount", CALCULATE (DISTINCTCOUNT (
DimCustomer[CustomerAlternateKey]))

)

Note that because ADDCOLUMNS is an iterator, you must
include CALCULATE (not required for extended columns in
SUMMARIZE) when the extended column uses an aggregate

function.

15.1.2 Understanding Other Grouping Functions

To simplify grouping and improve performance, Microsoft
introduced two other functions that are worth mentioning:
GROUPBY and SUMMARIZECOLUMNS.

Understanding GROUPBY

The GROUPBY function has the same syntax as SUMMARIZE
but it requires an "X" aggregate function, such as SUMX or
AVERAGEX, for the formula in the extended column.

GROUPBY(FactinternetSales,

DimDate[CalendarQuarter],

')'SumSaIes", SUMX(CURRENTGROUP(), FactinternetSales[SalesAmount])

Unlike SUMMARIZE, GROUPBY removes column values with
no data, so it acts as a SQL inner join. In addition, it sorts the
results in the way the column values are sorted in the model.
Instead of specifying a table as a first argument to the "X"
function, you use a special CURRENTGROUP() construct.
Evaluate the performance of GROUPBY and
ADDCOLUMNS/SUMMARIZE and choose the one that
performs better when extended columns use "X" functions.
This could be an issue if you want to use DISTINCTCOUNT
which doesn't have an "X" counterpart.

NOTE GROUPBY could be especially useful with nested groups where an outer
group aggregates an extended column in an inner group.
ADDCOLUMNS/SUMMARIZE doesn't support this.

Understanding SUMMARIZECOLUMNS

To make it easier for Power Bl to group data in DAX report
queries, DAX added a SUMMARIZECOLUMNS function, which
has this syntax:

SUMMARIZECOLUMNS(<groupBy columnName> [, < groupBy _columnName
>]..., [<filterTable>]...[, <name>, <expression>]...)

Like SUMMARIZE and GROUPBY, SUMMARIZECOLUMNS takes
one or more columns group by. By contrast, it also takes filter
tables which are especially useful for DAX queries. For
example, a variable can filter the date table as per the user's
selection on the report and pass it as an argument to
SUMMARIZESCOLUMNS to restrict the formula only for that
date. Like GROUPBY, SUMMARIZECOLUMNS excludes column
values with no data from the results so it acts as a SQL inner
join.

SUMMARIZECOLUMNS should be more efficient than
SUMMARIZE because it utilizes the storage engine better.
Unfortunately, SUMMARIZECOLUMNS doesn't work in
aggregate-over-aggregate measures and in other measures
that modify the filter context. For example, you can attempt
the following formula:

AVERAGEX (

SUMMARIZECOLUMNS (DimDate[CalendarQuarter],

"CustomerDCount”, DISTINCTCOUNT (DimCustomer[CustomerAlternateKey])
)

gICustomerDCount]

However, you'll get the error "SummarizeColumns() and
AddMissingltems() may not be used in this context".
Therefore, you must resort to ADDCOLUMNS/SUMMARIZE or
GROUPBY for measures that require computing aggregates
over aggregates.

15.2 Implementing Grouping
Measures

Now that you know about the DAX grouping functions, let's
take them for a ride. But before this, I'd like to emphasize
when they are not required, and when you can use
CALCULATE instead. In this practice, you'll implement a
measure to calculate the average order sales amount for
orders that have shipped as of the report date.

15.2.1 Using CALCULATE

Requirements can be tricky so make sure you understand
what the business rules are and how they are supported by
your data. Suppose you are tasked to calculate the average
order sales amount by ship date. As you know by now, every
row in FactResellerSales represents an order line item.
Should you calculate the average order amount by just
averaging the line items? Or, do you need to calculate the
order total before you aggregate? If the former approach is
OK, then CALCULATE is all you need.

Practice
Add an AvgOrderRevenue measure to FactResellerSales with

the following formula:

AvgOrderRevenue =

CALCULATE (

AVERAGE (FactResellerSales[SalesAmount]),
USERELATIONSHIP(FactResellerSales[ShipDateKey], DimDate[DateKey])

)

Output

To test the measure, create a Table visual with
DimDate[CalendarYear] and AvgOrderRevenue, as shown in
Figure 15.1.

CalendarYear AvgOrderRevenue

2011 1,926
2012 1,288
2013 1179
Total 1,322

Figure 15.1 The AvgOrderRevenue measure averages the
order line item revenue.

Analysis

It's important to understand how this measure works. The
AVERAGE function computes a simple average by summing
up FactResellerSales[SalesAmount] for each row (order line
item) in FactResellerSales whose ship date falls in the period,
and then divides the sum by the number or rows. The
formula uses USERELATIONSHIP to force the calculation over
the FactResellerSales[ShipDateKey] -> DimDate[DateKey]
relationship.

What if you need to perform some arithmetic before
aggregating the data, such as to compute the fulfillment
time as Ship Date - Order Date? Well, the first argument of
CALCULATE needs to be a column or a measure. So, you
could add a calculated column to FactResellerSales with this
formula:

FulfilledDuration = DATEDIFF(FactResellerSales[OrderDate],
FactResellerSales[ShipDate], DAY)

But what if you need to implement multiple measures and
creating calculated columns becomes counterproductive?
The second option is to switch to AVERAGEX and avoid
calculated columns whatsoever. This requires some formula
reshuffling.

AvgOrderFulfilledTime =

CALCULATE (

AVERAGEX (

FactResellerSales,

DATEDIFF (FactResellerSales[OrderDate], FactResellerSales[ShipDate], DAY)

),
USERELATIONSHIP(FactResellerSales[ShipDateKey], DimDate[DateKey])

)

Because AVERAGEX requires a table as a first argument, the
formula passes FactResellerSales. The advantage of
AVERAGEX is that it can take an expression that is calculated
for each row in the table (in the row context). The formula
uses the DATEDIFF function to calculate the time difference
in days between the line item order date and ship date.

15.2.2 Working with Grouping Functions

Let's move on now to the second version of the average
order revenue, which requires an average over the order
total. Therefore, you need to aggregate at the order level
before computing the average. This requires using one of the
aggregation functions | discussed in this lesson.

Practice

First, let's use ADDCOLUMNS/SUMMARIZE for the new version
of the AvgOrderRevenue measure. Add a new measure
AvgOrderRevenue (0) to FactResellerSales with the following
formula

AvgOrderRevenue (0) =

AVERAGEX (

CALCULATETABLE (

ADDCOLUMNS (

SUMMARIZE (FactResellerSales, FactResellerSales[SalesOrderNumber]),
"OrderTotal", CALCULATE (SUM (FactResellerSales[SalesAmount]))

),
USERELATIONSHIP (FactResellerSales[ShipDateKey], DimDate[DateKey])

),
[OrderTotal]

)

Output

Add AvgOrderRevenue (0) to the report and compare your
results with Figure 15..

CalendarYear AvgCrderRevenue AvgQOrderRevenue (o)
2011 $1,926 $22,041
2012 $1,288 $22,248
2013 $1,179 $20,111
Total $1,322 $21,194

Figure 15.2 The AvgOrderRevenue (0) measure computes
an average on top of the sales order total.

Analysis

Starting from SUMMARIZE and going outwards, first this
formula groups on FactResellerSales [SalesOrderNumber].
Then, ADDCOLUMNS adds an extended column to sum the
SalesAmount column. Next, CALCULATETABLE modifies the
filter context by using USERELATIONSHIP to navigate the
inactive relationship. Since ADDCOLUMNS returns a table,

you need CALCULATETABLE (not CALCULATE) to make this
change.

Now that you have the summary table, you're ready to
compute the average. The formula uses AVERAGEX because
it conveniently takes a table as the first argument. The
second argument is the extended column added by
ADDCOLUMNS.

Practice
The AvgOrderRevenue (02) measure uses GROUPBY instead
of ADDCOLUMNS/SUMMARIZE:

AvgOrderRevenue (02) =

AVERAGEX (

CALCULATETABLE (

GROUPBY (

FactResellerSales,

FactResellerSales[SalesOrderNumber],

"OrderTotal", SUMX (CURRENTGROUP (), FactResellerSales[SalesAmount])

)I
USERELATIONSHIP (FactResellerSales[ShipDateKey], DimDate[DateKey])

),
[OrderTotal]

)

Analysis

GROUPBY has the same syntax as SUMMARIZE. The
difference is that you need to use SUMX and
CURRENTGROUP(). Using the profiling techniques you'll learn
in the "Queries" part of the book, you can see that this
version uses only two queries to the storage engines versus
four with ADDCOLUMNS/SUMMARIZE. Therefore, it makes
sense to test GROUPBY and use it if it performs better.

15.3 Summary

Most measure requirements can be met with CALCULATE or
CALCULATETABLE. Use the DAX grouping functions to
aggregate data when you need to produce aggregates over
aggregates. Consider GROUPBY when you can use an "X"
function for the aggregation. Otherwise, stick to
ADDCOLUMNS/SUMMARIZE.

PART 4

Time intelligence

One of the most common data analytics tasks is
implementing time calculations, such as year-to-date,
parallel period, previous period, period-over-period
variances, and so on. DAX has about 40 functions for
extending your data models with time calculations, but you
don't need to know them all.
This part of the book teaches you how to implement time
intelligence. Since time intelligence requires a date table, it
starts by teaching you how to work with built-in and custom
date tables. After revisiting quick measures for time
intelligence, it shows you how to implement custom formulas
for more advanced requirements, such as custom date filters
and semi-additive measures. You'll also learn how to
centralize time intelligence formulas by using calculation
groups.

You'll find the completed exercises and reports for this part
of the book in the Adventure Works and Inventory models
that are included in the \Source\Part4 folder.

Lesson 16

Working with Date Tables

Time intelligence requires a date table. Otherwise, DAX time
intelligence functions won't work, or they will produce wrong
results. This lesson starts by explaining what options Power
Bl supports for date tables. You'll learn the difference
between built-in and custom date tables. I'll also share best
practices for configuring date tables. You'll find the DAX
formulas for this lesson in \Source\Part4\Working with Date

Tables.dax.

16.1 Understanding Date Tables

A date table stores a range of dates that you need for data

analytics. A data table must meet the following

requirements:

* Day granularity - The granularity of the date table must be
at a day level.

* Consecutive range - The date table must store a
consecutive range of dates. No gaps are allowed.

* Date column - The date table must include a column of a
Date data type. This is the only column required but
typically a date table includes other columns for flexible
exploration, such as CalendarQuarter, CalendarYear, and
SO on.

16.1.1 Understanding Auto-generated Date
Tables

To avoid requiring you to create custom date tables, Power Bl
Desktop is configured by default to automatically generate
date tables and hierarchies. In Power Bl Desktop, this is
controlled by the Auto Date/Time setting in File -> Options
and Settings -> Options (Data Load tab in the Current File
section). This feature generates a hidden date table for every
column of a Date type. It also adds a hierarchy with Year,
Quarter, Month, and Day levels under each date field in the
Fields pane.

Understanding advantages of built-in date tables

The obvious advantage of the built-in date tables is that you
may not need a custom date table. You can start analyzing
your data by using the auto-generated Year, Quarter, Month,
and Day levels (also called variations). Time intelligence
formulas in quick measures support built-in date tables too.

Understanding disadvantages of built-in date tables
The main disadvantage of the built-in date tables is that they
are not flexible. You can't access the actual tables and

change them. You can't add additional fields or levels, such
as to have a fiscal calendar or a flag to mark workdays. In
addition, these can severely bloat your model as you
discovered in the "Understanding Storage" lesson. Not only
does Power Bl generate a table for every date field, but it
also adds rows for the entire date range.

For example, let's say you have a date with a minimum
value of January 1, 1900 and a maximum value of December
31, 2200. When creating the hidden date table, Power Bl will
populate it with 109,573 rows. If you have 10 date fields like
this, you've now added over one million rows just for date
tables! This can severely bloat your data model. Therefore, if
you plan to use auto-generated date tables, leave this
feature on but monitor the size of your data model.

TIP As a best practice, have a designated Date table and turn off auto-generated
date tables. You can use the Vertipaq Analyzer to check the storage of the built-in
date tables (all these tables whose names start with

LocalDateTable_<guid>). Consider turning off built-in date tables if they consume
excessive storage.

Using built-in date tables

You can use the levels of the built-in date hierarchies like any
Power Bl hierarchy. For example, you can drag the entire
hierarchy or just one level to your visual. The left screenshot
in Figure 16.1 shows how the built-in hierarchies appear in
the Fields pane. Power Bl automatically generates the
hierarchy and names it Date Hierarchy, but you can rename
it. The right screenshot shows the hierarchy and its levels
(variations) appear in the Values area if you add a date field
(DueDate) that has auto-generated hierarchy.

4 EE FactinternetSales

M CarrierTrackingNumber

= Values
M ° CurrencyKey
B CustomerKey DueDate
B CustomerPONumber Year

: rt
B > DiscountAmount et

4« M B DueDate Remove field
+« M ": Date Hierarchy New quick measure
W B Year
B ¥ Quarter
M i@ Month
W | Day

Show items with no data

DueDate

+/ Date Hierarchy

Figure 16.1 You can use auto-generated hierarchies and
levels like any other any Power Bl hierarchy or field.

Notice that you can remove hierarchy levels in the
Visualizations pane if you don't need them on the report. If
you only want to see the date field (and not the hierarchy) in
your visual, you can expand the dropdown next to the home
field in the Visualizations pane and switch from the hierarchy
to the date field, as shown in Figure 16.1.

Disabling built-in date tables

You can turn off the Auto Date/Time setting in your Power Bl
Desktop file to disable built-in date tables. You must turn it
off for each Power Bl Desktop file (currently, there isn't a
global default setting). This is what happens when you turn
this setting off:

* Power Bl deletes all built-in date tables in the model. You
can't turn them on and off per field or table.

* If there are existing measures, such as quick measures,
that reference the date variations, they will be invalidated.
You must change their formulas to reference the
corresponding fields in your custom Date table.

Power Bl supports special syntax for referencing auto-
generated date levels. For example, if you create a quick
year-to-date measure that references a date field with an

auto-generated date hierarchy, Power Bl generates this

formula:
SalesAmount YTD =
IF(
ISFILTERED('FactinternetSales'[OrderDate]),
ERROR("Time intelligence quick measures can only be grouped or filtered by
the Power Bl-provided
date hierarchy or primary date column."),
TOTALYTD(
SUM('FactinternetSales'[SalesAmount]),
'FactinternetSales'[OrderDate].[Date]
)
)

'DimDate'[Date].Date references the Date variation of the
auto-generated date table for the Factinternet-
Sales[OrderDate] field. Once you disable the Auto Date/Time
setting, this variation won't exist anymore, and the formula
will be invalidated. To fix it, just change the formula to
reference the Date column in your Date table as follows
(changes are shown in bold):

SalesAmount YTD =

IF(

ISFILTERED(DimDate[Date]),
ERROR("Time intelligence quick measures can only be grouped or filtered by
the Power Bl-provided
date hierarchy or primary date column."),

TOTALYTD(

SUM('FactinternetSales'[SalesAmount]),

DimDate.[Datel]

)

16.1.2 Understanding Custom Date Tables

A best practice is to have a separate date table and write
time calculations to use this table. This approach is
preferable because it's more flexible (you control what fields
and hierarchies you want), reduces storage, and centralizes
maintaining your date table in one place. A date table
typically includes additional columns for flexible time
exploration, such as Quarter, Year, Fiscal Quarter, Fiscal Year,
Holiday Flag, and so on. It may also include fiscal and
manufacturing calendars.

Creating custom date tables

There are a few ways to create a custom date table. You can
import it from your corporate data warehouse. You can
maintain it in an Excel file and import it from there. As |
demonstrated in the lesson "Implementing Calculated
Tables", you can also use the CALENDAR and
CALENDARAUTO functions to auto-generate a date table. You
can even generate it in Power Query using custom code
written in the "M" query language.

And, as | explained in the same lesson, you can have more
than one date table in your model. This could be useful if you
want to aggregate the same fact table by multiple dates,
such as order date, ship date, and due date.

Marking a date table

You should go one step further by telling Power Bl about your

date table(s) by marking as such (right-click the date table in

the Fields pane and click "Mark as date table" -> "Mark as
date table"). Marking a date table accomplishes several
things:

* Disables the Power Bl-generated date table for the Date
field in the Date table. Note that it doesn't remove the
built-in date tables from the other tables unless you
disable the Auto Date/Time setting in File -> Options and
Settings -> Options (Data Load tab).

* Lets you use your Date table for time calculations in Quick
Measures.

* Makes DAX time calculations work even if the relationship
between a fact table and the Date table is created on a
field that is not a date field, such as a smart integer key in
the format YYYYMMDD. If the table is not marked, you
must use ALL(DimDate) in your DAX time intelligence
formulas to make them work.

* When Analyze in Excel is used, enables special Excel date-
related features when you use a field from the Date table,
such as date filters.

You can unmark a date table at any time by going through
the same steps (right-click the table and then click "Mark as
date table" -> "Mark as date table"). If you want to change
the settings, such as to use a different date column, go to
"Mark as date table" -> "Date table settings".

What about analysis by time?

One existing limitation of the automatic in-line date
hierarchy feature is that it doesn't generate time levels, such
as Hour, Minute, and so on. If you require time analysis,
create a Time table with the required levels and join it to the
fact table. This usually involves the following steps:

1.Create a DimTime table. Typically, this table is grained at a
minute level, so it will have 1,440 rows to store all minutes in
a day. There are plenty of scripts on the Internet for
generating such a table. | recommend the primary key of this
table be of the Time data type (so you can join it directly to
the corresponding foreign key in the fact table).

2.If this is not done already, in your fact table break the
column of the DateTime data type into two columns: one
that stores the date and another column that stores the
time.

3.Join the two columns to their respective dimension tables. If
you need to analyze the data by time, use DimTime, or you
can use it together with DimDate to analyze the data by date
and time.

16.2 Working with Date Tables

If you haven't done so, let's take a moment to make the
necessary configuration changes to the date tables in the
Adventure Works model. I'll also show you why leaving the
date fields in the fact tables could be beneficial in some
cases.

16.2.1 Working with Built-in Date Tables

Because by default Power Bl auto-generates date tables,
every date field in our model has a hidden date table behind
it.

Practice

Let's take a moment to get familiar with the built-in date
tables.

1.0pen the Adventure Works model in Power Bl Desktop.

2.In the Fields pane, expand FactinternetSales, and then
expand the OrderDate field. Notice that it has a Date
Hierarchy. This tells you that the model has built-in date
tables.

3.Right-click the FactinternetSales table and click "New quick
measure".

4.Configure the measure as shown in Figure 16.2 and click
OK.

Quick measures

Calculation Fields

Year-to-date total v /O Search

Calculate the total of the base value, starting from the

beginning of the current year. Learn more FactinternetSales

Base value ® CarrierTrackingNumber
R CurrencyKey
Sum of SalesAmount ¥ X
CustomerKey
Date ® CustomerPONumber
DiscountAmount
OrderDate X DDt
DueDateKey
ExtendedAmount
Freight
i OrderDate
SalesAmount
Don't see the calculation you want? Post an idea. oK Cancel

Figure 16.2 You can create quick time intelligence
measures using the built-in date tables.

Output
Power Bl creates SalesAmount YTD measure in the
FactinternetSales table.

1.Add a Table visual and bind it to the
FactinternetSales[OrderDate] date hierarchy and the
InternetSales[SalesAmount YTD] measure. Verify that the
measure works as expected.

2.Go to File -> Options and settings -> Settings and turn off
the Auto Date/Time setting in Data Load tab (the Current File
section). Click OK.

3.Back to the report, notice that the visual fails to render. If
you click the detail link, you'll see the error "Column
reference in 'OrderDate' in table 'FactinternetSales' cannot
be used with a variation 'Date' because it doesn't have any".
In addition, there is a warning icon preceding the

SalesAmount YTD measure in the Fields pane indicating that
the measure is invalidated.

Analysis

| recommend you decide upfront if you'll use a custom date
table or built-in date tables. If your reports or measures
reference built-in date tables, they will be invalidated once
you disable the "Auto Date/Time setting".

16.2.2 Working with Custom Date Tables

In the previous practice, you disabled the built-in date tables
because you had a custom DimDate date table. In this
practice, you'll mark this table as such to let Power Bl
validate it. You'll also change the quick measure formula to
use the DimDate.

Practice

Star by marking the date table.

1.In the Fields list, right-click the Date table and then click
"Mark as date table" -> "Mark as date table".

2.Expand the "Date column" drop-down and select the Date
column (you must select a column that has a Date data
type), as shown in Figure 16.3. Press OK once Power Bl
validates the date table to ensure that it meets the
requirements | listed at the beginning of this lesson.

Mark as date table %

Select a column to be used for the date. The column must be of the data type 'date’ and must contain

only unique values. Learn more

Date column

Ciate v

Validated successfully

@ When you mark this as a date table, the built-in date tables that were associated with this table
are removed. Yisuals or DAY expressions referring to them may break.

Learn how to fix visuals and DAX expressions

Ok Cancel

Figure 16.3 Mark your date table(s) to let Power Bl know
about them.

3.Change the formula of the FactinternetSales[SalesAmount
YTD] measure to reference
DimDate[Date].

Output

The FactinternetSales[SalesAmount YTD] measure validates
successfully and the report works again. If you right-click the
Date table and then click "Mark as date table" again, you
should see a green check mark indicating that the DimDate
table is already marked.

Analysis

As | explained, marking a date table has important
advantages, including letting Power Bl validate its data so
that your DAX time intelligence formulas work as expected.

Practice

Now that you have a custom date table, should you leave the
date fields behind in the fact table? This will surely confuse
the end user as to which date to use. However, having these
fields could be very beneficial to overwrite the selection in
filters and slicers. Suppose you have a dashboard-looking

report that has a slicer to let the user select one or more
years by filtering DimDate[CalendarYear]. However, there is
a chart that must overwrite the filter selection and show a
trend across several years.

1.Add a Column Chart visual and bind it to
FactinternetSales[OrderDate] in the Axis area and Fact-
InternetSales[SalesAmount] in the Values area.

2.Add a slicer and bind it to DimDate[CalendarYear], as
shown in Figure 16.4.

CalendarYear

L3K
SN
2(
1)
P,
an 05 an 12 an 19 an 26

) N

Figure 16.4 You can use date fields in fact tables to
overwrite global filters.

3.This step is important to prevent the slicer from filtering
the chart. Click the slicer to select it. In the Format ribbon,
click "Edit interactions". You should see additional icons
appearing outside the chart. Click the None icon.

4.Use the Filter pane to apply a chart-level filter, such as to
filter OrderDate after January 1, 2014.

Output

The chart has a visual-level filter on OrderDate that works
independently from the global filter on CalendarYear, as you
can see by changing the year in the slicer. More importantly,
the chart can be reconfigured to show sales by any other
date field in FactinternetSales, such as DueDate or ShipDate.

Analysis

You can use the date fields in fact tables to overwrite global
filters and to allow the user to slice the report by dates that
might not even have relationships to your custom date table,
such as OrderDate, ShipDate, DueDate. Unfortunately, Power
Bl doesn't allow you to turn on built-in date hierarchies
selectively, such as to enable the Year-Quarter-Month-Day
hierarchy on the DueDate field but not for other dates.
Hence, if the built-in date tables don't consume too much

space, consider leaving them enabled for maximum
flexibility.

16.3 Summary

Date tables are very important to any model because almost
every model needs time intelligence. In this lesson, you
learned about built-in and custom date tables. As a best
practice, use a custom date table but consider leaving built-
in date tables if you need their auto-generated variations
and if they don't bloat the model. Don't forget to mark your
custom date table as such.

Lesson 17

Quick Time Intelligence

You've seen how quick measures deliver pre-packaged DAX
measure formulas. This lesson continues exploring the quick
measures for time intelligence. It will help you understand
how time intelligence formulas work, and how you can
modify the formulas to tailor them to your needs. You'll find
the DAX formulas for this lesson in \Source\Part4\Quick Time
Intelligence.dax.

17.1 Understanding Quick Time
Intelligence

Currently, Power Bl packs seven quick measures specific to
time intelligence. Table 17.1 groups them in three
categories: "To-date", "Period-over-period % change", and
"Rolling average".

Table 17.1 This table shows the quick time intelligence measures
organized in three categories.

Category Time Intelligence Formulas Used Description

To-date TOTALYTD, TOTALQTD, TOTALMTD Computes the "to-date" value from
the first day of the period until the
current date.

Period-over-period % DATEADD Computes the % change between
change two periods.
Rolling average ENDOFMONTH, STARTOFMONTH, Computes an average over several periods.

DATESBETWEEN, LASTDATE,
DATESINPERIOD

17.1.1 Understanding "To-date" Measures

DAX has three functions for computing "to-date" running
aggregates: TOTALYTD, TOTALQTD, and TOTALMTD. They
have the same syntax with the exception that TOTALYTD has
an optional fourth argument to let you specify the year's end
date.

TOTALYTD (<Expression>, <Dates> [, <Filter>] [, <YearEndDate>])

Understanding syntax

The first argument is the expression to be evaluated. For
example, if you need to compute the sum of
FactinternetSales[SalesAmount], you'll pass
SUM(FactinternetSales[SalesAmount]). Or, if you have an
existing measure, you can specify the measure name in
square brackets, such as [NetProfit].

Since your model might have multiple date tables (or
multiple built-in date hierarchies), the second argument
must reference a column of a Date data type that will be
used to evaluate the expression over time, such as

DimDate[Date]. If you use a built-in date table, you need to
reference the Date variant, such as
FactinternetSales[OrderDate].Date.

The Filter argument is optional. Like CALCULATE, you can
pass a filter condition or a table to filter the results further.
For example, if you don't mark your date table and the
relationship to DimDate is not on a date column, you must
pass ALL(DimDate) to the Filter argument for the function to
work. However, if the relationship is on a date column and
the custom date table is marked, Power Bl adds the ALL
function in the formula for you and you can omit it.

Lastly, TOTALYTD takes an optional YearEndDate
argument, which could be handy for working with fiscal
years. For example, if your fiscal year ends in June, you can
pass "6/30", "Jun 30", or "30 June", or any string that
resolves to a month/day. Unfortunately, you can't pass a
measure (you must provide a static string).

TIP As a best practice, have a designated Date table with the calendars you
need, such as regular, fiscal, and manufacturing calendars. If you do this, you
have more flexibility and don't have to specify the YearEndDate argument for
fiscal years. Not to mention that quarters also need to be offset for fiscal
calendars, but TOTALQTD doesn't accept a YearEndDate argument.

Understanding evaluation

The "to-date" functions help you avoid constructing the date
ranges for time intelligence measures. For example,
TOTALYTD (SUM[FactinternetSales[SalesAmount],
DimDate[Date]) is a shortcut to:

g:)ALCULATE (SUM (FactinternetSales[SalesAmount]), DATESYTD (DimDate[Date]
The DATESYTD function removes any filters from the
DimDate table and then applies a filter to select all dates
from the beginning of the period until the current date. In the
case of TOTALYTD, the filter looks like this:

CALCULATE (

SUM (FactinternetSales[SalesAmount]),

FILTER (

ALL (DimDate[Date]),

DimDate[Date] <= MAX (DimDate[Date]) && YEAR (DimDate [Date]) = YEAR (
MAX (DimDate [Date]))

)

As you know by now, the MAX function returns the largest
value in the filter selection. So, if the user sets the report
date to July 4, 2013, MAX(DimDate[Date]) will return this
date. The FILTER function filters all dates where their year
matches the current year and that are before or equal to the
current date.

17.1.2 Understanding Variance Measures

There are three variance quick measures for computing
period-over-period percentage variance at year, quarter, and
month levels. The Quick Measures window allows you to
specify the number of periods to lag, such as in the case
when you need to calculate the variance between parallel
periods.

Understanding syntax

This is what the quick measure formula looks like for Year-
over-year change with the default lag of one year and SUM
aggregation:

SalesAmount YoY% =
VAR _ PREV_YEAR =

CALCULATE(
SUM('FactResellerSales'[SalesAmount]),
DATEADD('DimDate'[Date], -1, YEAR)

)
RETURN

DIVIDE(SUM('FactinternetSales'[SalesAmount]) - _ PREV_YEAR, _ PREV_YEAR)

Understanding evaluation
This formula defines a VAR _ PREV_YEAR variable which
calculates the SUM('FactResellerSales' [SalesAmount]) for the
same period last year. Like the "to-date" functions, DATEADD
takes a date column as the first argument. If the number of
periods is positive, DATEADD adjusts the date filter forward,
otherwise it lags the current period with the number of
periods specified. Finally, the third argument specifies at
what level to lag.

Given the above example and the current month of April
2013, DATEADD with one year to lag returns April 2012.
Finally, the formula computes the variance as a percentage

by using the DIVIDE function for a safe divide in case the
previous year value is zero.

As you can see, the quick calculations are easy to
understand. And the best part is that you can change the
formulas if needed. The last quick measure type (rolling
average) is an interesting calculation which involves several
date functions. I'll explain how it works and how to change
its behavior in the next section.

17.2 Implementing Rolling Averages

A rolling average measure is typically used to give you a
better idea of values in a series by smoothing ups and
downs. Suppose you need to implement a rolling average
measure over three months (previous, current, and next
month), as shown in Figure 17.1.

2010 November
2010
2011 .
2011 February
2011 March

2011 Apn 5502074 §516,318

Figure 17.1 The "SalesAmount rolling average (c)" measure
computes a rolling average over three months.

The highlighted cell for January 2011 is computed as a
simple average over the previous month (December 2010),
current month (January 2011), and the next month (February
2011). The formula can't just divide the sum by three.
Instead, it must divide by the number of periods with data.
For example, the November 2010 is computed by dividing
the December 2010 value by one since there is data for
December only.

17.2.1 Implementing a Quick Measure

The rolling average is one of the quick measures that Power
Bl supports. If you're excited about quick gains and DAX
avoidance, let's take this path to see how far you can get.

Practice
Follow these steps to implement the rolling average as a
quick measure:

1.Right-click FactinternetSales in the Fields pane and click
"New quick measure".

2.In the "Quick measures" window, expand the Calculation
dropdown and select "Rolling average" under the "Time
intelligence" section.

3.Drag FactinternetSales[SalesAmount] to the "Base value"
field. Notice that the default aggregation is Sum, but you can
expand the dropdown and select another standard
aggregation function. You can also drag an existing explicit
measure.

4.Expand the Period dropdown and select Months to compute
the rolling average across months.

5.Leave the "Periods before" and "Periods after" to their
default values of 1.

6.If you have followed my advice from the last lesson to
remove the built-in date tables, attempt to drag
DimDate[Date] to the Date field. Notice that Power Bl
complains with the following error "Only Power Bl-provided
date hierarchies are supported". Unfortunately, the rolling
average quick measure doesn't work with a custom date
table (a custom date table is a best practice).

7.To complete this exercise, click Cancel. Then turn on the
Auto Date/Time setting in File -> Options and Settings ->
Options (Data Load tab in the Current File section). This will
auto-generate date tables for each date field in the model.
Don't worry that this is not a best practice. I'll show you how
to use a custom date table later.

8.Create a new quick measure and this time, drag
FactinternetSales[OrderDate] to the Date field. Compare your
setup with Figure 17.2. Click OK.

Quick measures

Calculation Fields

Rolling average v L Search

Calculate the average of base value over a certain
number of periods before and/or after each date.
Learn more

FactinternetSales

CarrierTrackingNumber

Base value © _
CurrencyKey

Sum of SalesAmount

CustomerKey

CustomerPONumber

Date © 5. DiscountAmount
OrderDate 2| DueDate
DueDateKey
Period © ExtendedAmount
> Freight
Months v -
=z OrderDate
Periods before ©® OrderDateKey
f OrderLink

! 5. OrderQuantity

. il PendingOrdersCount
Periods after © ' 9

ProductKey
1 ProductStandardCost

@ Profit by Top Tier Customers
SalesAmount

Don't see the calculation you want? Post an idea. oK Cancel

Figure 17.2 The rolling average quick measure requires
Power Bl-provided date hierarchies.

Output
Power Bl adds a "SalesAmount rolling average" to the Fields
pane.

1.Rename this measure to SalesAmount rolling average (q).

2.Add a Table visual with FactinternetSales[OrderDate] (Year
and Month levels are enough), Factinternet-
Sales[SalesAmount], and FactinternetSales[SalesAmount
rolling average (q)] to the Values area. Compare your results
to Figure 17.1.

Analysis

If you select the "SalesAmount rolling average (q)" measure
in the Fields pane, you'll see this rather complicated formula
in the formula bar:

SalesAmount rolling average (q) =

IF(

ISFILTERED('FactinternetSales'[OrderDate]),

ERROR("Time intelligence quick measures can only be grouped or filtered by the
Power Bl-provided date hierarchy or primary date column."),

VAR __ LAST DATE = ENDOFMONTH('FactinternetSales'[OrderDate].[Date])

VAR _ DATE_PERIOD =

DATESBETWEEN(

'FactinternetSales'[OrderDate].[Date],

STARTOFMONTH(DATEADD(__LAST _DATE, -1, MONTH)),
ENDOFMONTH(DATEADD(__LAST DATE, 1, MONTH))

)

RETURN

AVERAGEX(

CALCULATETABLE(

SUMMARIZE(

VALUES('FactinternetSales'),

'FactinternetSales'[OrderDate].[Year],
'FactinternetSales'[OrderDate].[QuarterNo],
'FactinternetSales'[OrderDate].[Quarter],
'FactinternetSales'[OrderDate].[MonthNo],
'FactinternetSales'[OrderDate].[Month]

),
__DATE_PERIOD
),
CALCULATE(
SUM('FactinternetSales'[SalesAmount]),
ALL('FactinternetSales'[OrderDate].[Day])
)

)

)

Let's take a moment to understand it, so you can customize
it later. The formula starts with an IF statement which uses
the ISFILTERED function to ensure that a variation of the
built-in OrderDate hierarchy is on the report. Then, it
declares a variable VAR _ LAST DATE which uses the
ENDOFMONTH to return the last date in the month.

The formula also declares a variable VAR _ DATE_PERIOD
to store a table of date periods required for the calculation.
The variable formula uses the DATESBETWEEN function,
which returns a table with one column populated with dates

within a given range. In this case, the range starts at the
beginning of the previous month (STARTOFMONTH returns
the first date in a month). and ends one month after the
current month. The net effect is that VAR _ DATE_PERIOD has
all the dates that span the previous, current, and next
month.

The main part of the formula (where RETURN starts) is
somewhat convoluted but we can simplify it later. Starting
with SUMMARIZE, first the formula groups FactinternetSales
by Year, Quarter, and Month levels. Then CALCULATETABLE is
used to filter the grouped table only for the dates in the
__DATE_PERIOD variable. The net result is that SUMMARIZE
will have as many rows as the number of combinations of the
grouped fields. In other words, SUMMARIZE will produce a
table populated with all months that have sales.

Finally, AVERAGEX is used to produce the simple average
over the date table. The simple average will be computed
over the sum of FactinternetSales[SalesAmount]. The
formula uses CALCULATE to remove the filter context from
the Day variation of the built-in OrderDate hierarchy.

17.2.2 Customizing the Quick Measure

In this practice, you'll customize the rolling average formula
to use the custom DimDate table and to simplify it.

Practice

Let's create a new measure so you can test the modified
formula side by side with the query measure. Add a new
measure to FactinternetSales with the following formula:

SalesAmount rolling average (c) =

VAR _ LAST DATE = ENDOFMONTH(DimDate[Date])
VAR _ DATE_PERIOD =

DATESBETWEEN(

DimDate[Date],
STARTOFMONTH(DATEADD(__LAST DATE, -1, MONTH)),
ENDOFMONTH(DATEADD(__LAST DATE, 1, MONTH))
)

RETURN

AVERAGEX(

CALCULATETABLE(

ADDCOLUMNS(

SUMMARIZE(

DimDate,
DimDate[CalendarYear],
DimDate[EnglishMonthName]

),
"Sales", CALCULATE(SUM('FactinternetSales'[SalesAmount]))

),
_ DATE_PERIOD

)
, [Sales]

)
Output
Change your report as follows:

1.Replace the OrderDate variations from the report with
DimDate[CalendarYear] and DimDate[EnglishMonthName].

2.Replace the [SalesAmount rolling average (gq)] measure
with [SalesAmount rolling average (c)].

The report should produce the same results. As an optional
step, disable the built-in date hierarchies to make sure that
the formula works without them.

Analysis
This formula reuses the two variables from the quick
measure formula, but it makes the following changes:

1.SUMMARIZE groups only at the year and month levels
because this combination returns all months within a given
year, such as "2010 January", "2010 February", and so on.
Note that if you just group by EnglishMonthName, you'll get
a table with 12 rows that sum sales across all years (if the
year is not on the report), so you need to add the year in the
SUMMARIZE function.

2.The formula uses the ADDCOLUMNS/SUMMARIZE pattern to
project an extended column "Sales". You can also use
GROUPBY. In this case, the ADDCOLUMNS/SUMMARIZE
pattern works great because it returns only rows with data
(remember that the simple average needs to divide by
months with data only).

3.Instead of using CALCULATE, AVERAGEX iterates over the
summarized table and produces a simple average over the

[Sales] extended column.

17.3 Summary

Quick measures are a great way to get you started with DAX
formulas provided by Microsoft. However, they have
limitations and you still need to know DAX to tailor them to
your needs. Now that you know about time intelligence
functions and how they work, let's create custom
calculations that go beyond quick measures for time
intelligence.

Lesson 18

Custom Time Intelligence

As you've seen, Power Bl comes with useful quick measures
for basic time intelligence, but the chances are that your
time intelligence requirements will go far beyond these
metrics. This lesson starts by explaining how to overwrite the
date filter context. It walks you through the implementation
of custom time intelligence calculations, such as for
analyzing data by weeks. You'll find the DAX formulas for this
lesson in \Source\Part4\Custom Time Intelligence.dax.

18.1 Understanding Custom Time
Intelligence

Custom time intelligence is based on the following tenants:

* Custom date table - As | explained in the lesson "Working
with Date Tables", a custom date table is a best practice
because you can extend the date table with useful fields,
such as fiscal calendars and weeks. You should mark this
date table as such so that Power Bl can validate it and that
time intelligence functions work when they reference this
table.

* Date filter context - Depending on your requirements, you
need to learn how to modify the date filter context. For
example, if you are working on a measure that returns
revenue for the current week, you must filter the date
table accordingly.

18.1.1 Changing Date Context

As you know by now, once you move beyond basic
measures, you need to change the measure filter context in
different ways. Custom time intelligence is no exception. At a
high level, implementing your own time intelligence may
involve two steps. First, try to find a suitable DAX function for
the task at hand. If one exists, then use it because it will
simplify your formula. For example, it will overwrite the date
context for you, so you don't have to ignore it explicitly with
the ALL function. If there is no suitable DAX function, then
create your own date filter context by using whatever date
arithmetic is required. Let's discuss these two steps in more
detail.

Understanding the PREVIOUSDAY function

Suppose you're working on a measure that returns the
revenue for the previous day, such as to calculate a variance
between the current day and previous day. After consulting
with the DAX documentation, you come across the

PREVIOUSDAY function, which looks promising. It has this
syntax:

PREVIOUSDAY (<Dates>)

It takes a single argument, which typically is a reference to a
column of a Date data type (or DateTime). DAX transitions
the filter context and you don't have to ignore it with the ALL
function:

Understanding context transition

Figure 18.1 shows how PREVIOUSDAY changes the filter
context. Suppose the user has selected July 4, 2018 in a
report slicer or filter. This becomes the "as of" or "current”
date that defines the default filter context for all time
calculations on the report.

FactResellerSales Table

DimDate Table
1/3/2018 1 100
1112018 7 2018 7132018 2 200
122018 1 2018 previous day | 732018 3 300
132018 7 2018 < I 7132018 7 400
WA T A —Tunve 100
current day 147018) 200
1/4/2018 3 300

Figure 18.1 DAX functions, such as PREVIOUSDAY, change
the filter context on the Date dimension.

If you don't use any time intelligence function that
transitions the date filter context, your measures will
evaluate formulas as of the current date. Let's say you have
the following measure:

PreviousDaySales = CALCULATE(SUM(FactResellerSales[SalesAmount]),
PREVIOUSDAY(DimDate[Date]))

When DAX parses PREVIOUSDAY and discovers a reference to
a date column, it replaces the reference with the following
formula:

CALCULATETABLE (DISTINCT (<Dates>))

The CALCULATETABLE function transitions the filter context
on the DimDate table to July 3, 2018 and the measure
returns the revenue as of that date.

18.1.2 Creating Custom Date Context

Although DAX packs many time intelligence functions to
address common requirements, sometimes you won't find an
appropriate function. In this case, you need to filter your
date table (or built-in date hierarchy) explicitly to evaluate
the formula in the appropriate context.

Filtering the date table

You can use the FILTER function to filter the date table but
DATESBETWEEN is specifically designed to work with dates.
It has the following definition:

DATESBETWEEN (<Dates>, <StartDate>, <EndDate>)

The first argument is a reference to a column of a Date data
type, such as DimDate[Date]. The second and third
arguments define the range. If the StartDate is omitted,
DATESBETWEEN defaults to the earliest date in the Dates
column evaluated in the current context (same as
MIN(DimDate[Date]). Similarly, if the EndDate is omitted,
DATESBETWEEN will default to the latest date in the Dates
column evaluated in the current context (same as
MAX(DimDate[Date]).

Using variables

Variables could make the date arithmetic easier to read and
maintain, and the resulting formulas might perform better.
The rolling average measure you implemented in the
previous lesson uses variables to scope the date period.

VAR _ LAST DATE = ENDOFMONTH(DimDate[Date])

VAR __ DATE_PERIOD =
DATESBETWEEN(

DimDate[Date],
STARTOFMONTH(DATEADD(__LAST DATE, -1, MONTH)),
ENDOFMONTH(DATEADD(__LAST DATE, 1, MONTH))

)

Once you have the filtered date table, you can add it as an
argument to CALCULATE or CALCULATETABLE to modify the
measure filter context.

18.2 Implementing Custom Time
Intelligence

Let's put what you've learned about customizing time
intelligence into practice. Analyzing data by weeks is a
common requirement. However, as you'll quickly discover
there are no DAX functions for working with weeks, except
WEEKDAY (returns a number identifying the day of the week)
and WEEKNUM (returns the week number in the year). In the
first practice, you'll add a column to the DimDate table in the
format "W <weekstartdate>". In the second practice, you'll
implement a rolling variance for comparing the revenue in
the last seven days to the revenue in the seven days prior to
that.

18.2.1 Adding Weeks to Date Tables

Management has requested the ability to analyze data by
weeks. The week name should include the week starting
date. You'll implement this requirement by adding a
calculated column to DimDate.

Practice

Follow these steps to implement the WeekName calculated
column:

1.In the Fields pane (Data View or Report View tab), right-
click DimDate and then click "New column®.

2.Enter the following formula in the formula bar for the new
calculated column:

WeekName = "W " & FORMAT((DimDate[Date] - WEEKDAY(DimDate[Date], 2) +
1), "Short Date")

3.To sort weeks in their chronological order as opposed to an
alphanumeric order, add a WeekSort calculated column with
this formula:

WeekSort = DimDate[Date] - WEEKDAY(DimDate[Date], 2) + 1

4.In the Data View tab with DimDate selected, select the
WeekName column. In the Modeling tab, expand the "Sort By

Column" button and select WeekSort.

5.Hide the WeekSort column because it's used just for
sorting.

CalendarYear W 12/27/2010 W 1/24/2011 W 2/28/2011 W 3/28/2011 W 4/25/2011

2010 $489,329

2011 $1,538,408 $1,165,897 $844.721 $2,324,136
2012

2013

Tatal S4R9 329 %1 53R 4nR %1 1A5 RG7 SR44 721 %2 324 13A

Figure 18.2 Use the WeekName function to analyze
revenue by weeks.

Output
Add a Matrix visual with DimDate[CalendarYear] in the Rows

area, DimDate[WeekName] in the Columns area, and
FactResellerSales|[Amount] in the Values area (see Figure
18.2). The date format in the WeekName column may differ
from the screenshot because it will reflect your local culture.

Analysis
The formula uses the WEEKDAY function to construct the
week name. WEEKDAY returns a number from 1 to 7. The
second argument of WEEKDAY is optional, and it allows you
to specify the week start day. The default value is one, which
means that the week will start on Sunday. The formula
passes two to start the week on Monday. The weekday is
then subtracted from the Date column so that all days within
a week share the same week name. For example, if
DimDate[Date] is July 4, 2019 (Thursday), the formula
subtracts 4 from that date and it gets Jun 30, 2019. Then it
adds one and it gets July 1, 2019, which falls on a Monday.
Then, the formula uses the FORMAT function to format the
date. FORMAT supports different format settings for numbers
and dates. As a best practice, you use the predefined
culture-neutral formats, such as "Short Date", so that Power
Bl can format the column using your culture settings.

NOTE The week names may require more complex logic when they span years.
This example carries the previous year into the next. For example, the week
starting December 29, 2008 is named "W 12/29/2008" but you may need to start
every new year with a new week.

18.2.2 Implementing a Rolling Variance

You're tasked to implement a week-over-week (WoW) rolling
variance to calculate the change between count of orders
submitted in the last 7 days to count of orders submitted in
the seven days prior to that. The measure must work as of
any date specified by the interactive user.

Practice

Let's go through a couple of implementation options. Start by
implementing an explicit measure to return the distinct count
of FactinternetSales[SalesOrderNumber] (remember that an
order can have several line items so you can't just count
SalesOrderNumber).

1.Add a measure FactinternetSales[OrderCount] with the
following formula:

OrderCount = DISTINCTCOUNT (FactinternetSales[SalesOrderNumber])

2.To avoid an overly complex formula that defines two
measures and a variance, let's break it up into three
measures. First, implement an OrderCount7 measure to
count orders placed in the last seven days as of the report
date:

OrderCount7 =

VAR EOP = MAX (DimDate[Date])

VAR BOP = MAX (DimDate[Date]) - 6

VAR Period = DATESBETWEEN (DimDate[Date], BOP, EOP)
RETURN

CALCULATE ([OrderCount], Period)

Another way to write this measure would be:

OrderCount7 =

VAR EOP = MAX (DimDate[Date])
VAR BOP = MAX (DimDate[Date]) - 6
RETURN

CALCULATE ([OrderCount],
DimDate[Date] >= BOP,
DimDate[Date] <= EOP))

Output

Add a Table visual with DimDate[Date] and
InternetSales[OrderCount?] fields (see Figure 18.3).
Because the OrderCount7 measure is very performance

intensive, | suggest you limit the report to filtering only a few
days, such as by creating a visual-level filter where Date is
on or after January 1, 2014.

Date OrderCount?
1/1/2014 337
1/2/2014 277
1/3/2014 240
1/4/2014 217
1/8/9N1 A 221

Figure 18.3 The OrderCount7 measure calculates the order
count for the past seven days as of the current date.

Analysis

The first OrderCount7 version uses a Period variable to filter
the DimDate table between the current date and six days
before. This is the implementation approach | discussed at
the beginning of this lesson. The second version uses filters
in CALCULATE. Interestingly, in this model the first version
outperforms the second almost twice!

TIP This is another example of why performance testing is so important. Different
measure versions will perform differently from one model to the next. In this
case, the performance impact is caused by the DISTINCTCOUNT function because
counting distinct values is very resource intensive. We'll see what you can do
about this in Part 5 of this book, but for now remember to try different versions
and optimize your measures relentlessly!

Assuming a report date of January 5, 2014, the alternative
SQL query would be:

SELECT COUNT (DISTINCT SalesOrderNumber)
FROM dbo.FactinternetSales
WHERE OrderDate BETWEEN '12/30/2013"' AND '1/5/2014'

Practice

Add another measure (OrderCountl4) to calculate the order
count for the previous seven days.

OrderCountl4 =

VAR EOP = MAX (DimDate[Date]) - 7

VAR BOP = MAX (DimDate[Date]) - 13

VAR Period = DATESBETWEEN (DimDate[Date], BOP, EOP)
RETURN

CALCULATE ([OrderCount], Period)

Lastly, add another measure "OrderCount WoW" that
calculates the change between the OrderCount7 and

OrderCountl4 measures.

OrderCount WoW =

VAR OrderCount7 = [OrderCount7]

VAR OrderCountl4 = [OrderCountl4]

RETURN

IF (

NOT ISBLANK (OrderCount7) && NOT ISBLANK (OrderCountl4),
[OrderCount7] - [OrderCount14]

)

Output

Add the OrderCountl4 and OrderCount WoW measures to
the report. Compare your results with

Figure 18.4.

Date OrderCount? OrderCount14 OrderCount WoW
1/1/2014 337 527 -190
1/2/2014 277 525 -248
1/3/2014 240 516 -276
1/4/2014 217 506 -289
1/5/2014 231 469 -238
1/6/2014 223 43 -208

171N A 17 204 120

Figure 18.4 The OrderCount WoW measure calculates the
variance between the OrderCount7 and OrderCountl14
measures.

Analysis

The only difference between OrderCountl4 and OrderCount?7
is that OrderCountl4 changes the date offset. [OrderCount
WoW] calculates the variance if both measures are not blank.

18.3 Summary

This lesson showed you how to use time intelligence
functions to modify the filter context. When there isn't a
suitable function, such as in the case of WoW calculations,
you can filter your data table (or built-in date hierarchy) and
change the filter context as per your requirements. It's
important to create and test different measure versions to
find which one performs the best.

Lesson 19

Semi-additive Measures

All the measures you've implemented until now aggregate
uniformly across all dimensions, including the Date
dimension. Sometimes, you might encounter semi-additive
measures, such as to handle inventory or account balances.
This lesson explains how additivity affects measures and
shows you how to implement semi-additive measures for
analyzing inventory balances. You'll find the DAX formulas for
this lesson in \Source\Part4\Semi-additive Measures.dax.

19.1 Understanding Measure
Additivity

The most common usage of data analytics is to aggregate
measures across dimensions. When you add an implicit
measure to the report, the measure is aggregated according
to the aggregate function you specify in the Visualizations
pane. The default aggregation is SUM for numeric fields and
Count for text fields. Explicit measures, of course, aggregate
using the formulas you write.

19.1.1 Understanding Additive Measures

The most useful measures are numeric and additive (also
called fully additive in the dimensional modeling
terminology), such as the SalesAmount and OrderCount
measures. Fully-additive measures are also uniform because
they can be aggregated across all dimensions. For example,
you can sum revenue across any dimension and get the
expected total.

Aggregating additive measures

When measures are fully additive, aggregated values can be
derived from previously aggregated results. No matter how
you slice and dice data, the aggregated measures produce
the correct totals without any special intervention. Suppose
you create a visual that shows revenue by month. When
Power Bl receives the query, it calls down the storage engine
to get the SalesAmount column aggregated at the month
level.

To do this, the storage engine scans the SalesAmount
column and rolls it up to months. Then, the formula engine
sums the results at a higher grain. For example, if the visual
shows yearly totals, Power Bl rolls up the monthly values to
years.

Understanding additive functions

Most DAX aggregate functions are additive. They perform
common aggregation tasks with additive measures. For
example, all standard aggregation functions for implicit
measures are additive, such as Sum, Min, Max, Count, and
Distinct Count. | mentioned before that whenever an "X"
function exists, Power Bl maps these functions to their "X"
counterparts. For example, SUM(table[column]) is internally
translated to SUMX(table, SUM(table[column]). So, the
extended functions are also additive.

19.1.2 Understanding Semi-Additive Measures

A semi-additive measure typically aggregates the normal
way across all dimensions except the Date dimension. For
example, although you can sum inventory balances across
product, it's meaningless to do so across time.

Aggregating semi-additive measures

To understand how semi-additive measures aggregate,
consider the following extract from a hypothetical Inventory
fact table (see Table 19.1).

Table 19.1 Semi-additive measures don't aggregate over time.

Product March 1st March Total
2nd

Product A 10 15 25 (15)

Product B 20 25 45 (25)

Total by 30 40 70 (40)

Product

This fact table stores the closing product quantity at the end
of each day. Aggregating the product quantity over the
Product dimension produces the correct total. However,
summing the product quantity over time is meaningless and
wrong. What is really needed is taking the ending balance as
of the requested date (the numbers in bold). For example,
the product quantity for Product A spanning two subsequent
days, March 1st and March 2nd, should show 15.

Understanding semi-additive functions

To support semi-additive measures, Power Bl provides
several functions, including FIRSTDATE, FIRSTNONBLANK,
LASTDATE, LASTNONBLANK, OPENINGBALANCEMONTH,
OPENINGBALANCEQUARTER, OPENINGBALANCEYEAR,
CLOSINGINGBALANCEMONTH, CLOSINGBALANCEQUARTER,
and CLOSINGBALANCEYEAR. As the lesson "Determining
Filter Context" demonstrated, more complex requirements
that cannot be addressed by the semi-additive functions
alone, may require more involved formulas, such as to
produce aggregate-over-aggregate results.

Understanding non-additive measures

Lastly, some measures, such as rates and percentages,
shouldn't be aggregated with standard aggregation functions
at all. For example, the ResellerSales[UnitPriceDiscountPct]
stores the discount percent and cannot be meaningfully
aggregated across any dimension. However, a calculated
column can use this measure to compute the net profit,
which can be aggregated. Or, an extended function, such as
SUMX can perform the arithmetic for each order line item
before the result is rolled up.

19.2 Working with Semi-additive
Measures

As a manufacturing company, Adventure Works maintains an
inventory. You're tasked to model inventory balances and to
produce a measure that returns the product quantity at
hand. This will help the Adventure Works management
analyze and forecast inventory levels.

19.2.1 Understanding the Schema

You won't use the Adventure Works model for this practice.
Instead, | imported the inventory-related tables from the
AdventureWorksDW database in the
\Source\Part4\Inventory.pbix file. Use this file for the
practices in this lesson.

Practice

Let's take a moment to get familiar with the model schema.
1.0pen the \Source\Part4\Inventory.pbix file in Power Bl
Desktop.

2.Switch to the Model View tab to review the model schema,
which is shown in Figure 19.1.

—

DimDate DimProduct

1 DayNumberOfWeek [T ArabicDescription
7] DayNumberOfvear
1 EnglishDayNameOfWeek

[EnglishMonthName

5| ChineseDescription
[Class

M color

[FiscalQuarter [T DaysToManufacture
3 DealerPrice

3 EndDate

3 FiscalSemester
["7 FiscalYear
M FrenchDayNameOfWeek

[FrenchMonthName

[EnglishDescription

i | EnglishProductName

 FactProductinventory - -
[DateKey

1 MovementDate
[ProductKey

[UnitCost

[UnitsBalance
[Unitsin

3 UnitsOut

Figure 19.1 The inventory schema consists of three tables
(one fact table and two dimension tables).

Analysis

In the corporate data warehouse (AdventureWorksDW
database), the inventory subject area is modeled using one
fact table and two dimension tables. Let's explain these
tables in more detail.

* FactProductinventory - This fact tables captures the
inventory movement measures (Unitsin and UnitsOut) and
the closing quantity measure (UnitsBalance) at the end of
every day. Dimensional modeling refers to this type of fact
table as a periodic snapshot.

* DimProduct and DimDate - You're already familiar with
these two dimensions from the Adventure Works model.
Here, they are used to analyze inventory by date and
product. I've renamed the DimDate[FullDateAlternateKey]
to Date. I've also marked DimDate as a date table and
configured DimDate[EnglishMonthName] to sort by the
DimDate[MonthNumberOfYear] column so that months are
sorted in their chronological order.

19.2.2 Working with Closing Balances

The UnitsIn and UnitsOut measures are additive because
they can be summed up across Product and Date. The
UnitsBalance measure is not and this will become obvious in
a moment.

Practice
Let's create a report to analyze the product closing balances.

1.Add a Matrix visual and bind it to
DimProduct[EnglishProductName] in the Rows area,
CalendarYear, CalendarQuarter, EnglishMonthName, and
Date fields from DimDate in the Columns area, and
FactProductinventory[UnitsBalance] in the Values area.

2.Drill down the 2013 year column to expand it to quarters,
and then drill down the fourth quarter to expand it to
months. Compare your results with Figure 19.2.

Total
Total

C
S
by
-3
]
v}

ember Total

27,125 26,250 27,125 80,500 80,500 80,500

78 80 93 251 251 251

-88 37 -2 -2 -2

21,700 21,000 21,700 64,400 64,400 64,400

27,125 26,250 27,125 80,500 80,500 80,500

h - Dis g -151 =212 27 -336 -336 -336

Blade 21,700 21,000 21,700 64,400 64,400 64,400
Cable Lock 124 120 124 368 368 368
Chain 11,824 11,980 14,384 38,188 38,188 38,188

Figure 19.2 The UnitsBalance measure sums up across any
field from DimDate and this is incorrect.

Analysis

While the report sums UnitsBalance over products (as it
should), it also sums balances across time and this is
incorrect. For example, the fourth quarter ending balance for
the first product (Adjustable Race) should be 27,125 (its
December balance) and not 80,500 (the sum of the three
months).

Practice
Let's fix the closing balances issue by creating a new
measure.

1.Add a UnitsAtHand measure to the FactProductinventory
table with the following formula:

UnitsAtHand = CALCULATE(SUM(FactProductinventory[UnitsBalance]),
LASTDATE(DimDate[Date]))

2.Replace the UnitsBalance field in the Matrix visual with
UnitsAtHand.

Output

The report now produces the expected results, as shown in
Figure 19.3. Please feel free to explore the data in different
ways, such as to use ProductLine (instead of
EnglishProductName) to aggregate products up.

Analysis

No matter how you slice the data, UnitsAtHand produces the
expected results. The formula uses the CALCULATE function
to overwrite the filter context by passing the LASTDATE
function as the second argument. As its name suggests,
LASTDATE returns the last date in the current context of the
specified column. For December 2013, the last date is
December 31, 2013. The measure gets the quantity from this
date and it applies it to the dimension totals. This is exactly
what you need to implement closing balances.

CalendarYear 2013 Total

CalendarQuarter 4 Total

EnglishProductName October November December Total

Adjustable Race E 875 875 875 875 875 875
All-Purpose Bike Stand _ 3 3 3 3 3 3
AWC Logo Cap ' 3 7 7 7 7 7
BB Ball Bearing [700 700 700 700 700 700
Bearing Ball . 875 875 875 875 875 875
Bike Wash - Dissolver _ 3 2 3 3 3 3
Blade . 700 700 700 700 700 700
Cable Lock _ 4 4 4 4 4 4
Chain . 400 464 464 464 464 464

Figure 19.3 The UnitsAtHand measure produces the
expected results by showing the last balance in the period.

Practice

If every product has its quantity recorded every day then
you're done. Real life is not perfect though and it's possible
that there will be days with no recorded quantities. Or, you
may not want to wait for the current month to be over to

show its balances. What should the measure return then?
Should it return the quantity for the last non-blank date? Or,
should it return an empty value, such as in the case when
the product is discontinued and destroyed? If you use
LASTDATE, you'll get the latter outcome.

1.Since Adventure Works has exemplary data quality and it
has data for every month and product, | added a calculated
column UnitsBalanceOverwrite to FactProductinventory to
simulate a missing quantity value. The measure formula
follows:

UnitsBalanceOverwrite = IF(FactProductinventory[ProductKey]=1 &&
FactProductinventory[DateKey] = 20131231,

BLANK(), FactProductinventory[UnitsBalance])

This formula sets a blank value for the Adjustable Race
product and December 31, 2013. You can achieve the same
effect if you remove the entire row in Power Query and
reload the table.

2.Change the formula of the UnitsAtHand measure to use the
UnitsBalanceOverwrite column. Notice that the Matrix visual
now shows a blank value in the quarter and year totals for
Adjustable Race.

CalendarYear 2013
CalendarQuarter

EnglishProductName October MNovember December Total

Adjustable Race [875 875 C .]
All-Purpose Bike Stand 3 3 3 3
' 7 7 7

AWC Logo Cap 3

o Rall RaarinA rialal TNnN TN Tnn

Figure 19.4 LASTDATE will return an empty balance if there
is balance for the closing period.

If data is not available on the last date, the measure returns
a blank value. Assuming you want the totals to show the last
non-blank balance instead, change the UnitsAtHand formula
as follows:

UnitsAtHand =

CALCULATE (

SUM (FactProductinventory[UnitsBalanceOverwrite]),

LASTNONBLANK (

DimDate[Date],
CALCULATE (SUM (FactProductinventory[UnitsBalanceOverwrite]))

)
)

Output

The Adjustable Race totals should now show 875. This is the
November 30th balance, which happens to be the last non-
blank date.

Analysis

The LASTNONBLANK function goes back in time to find the
last date where the expression passed a second argument
has a non-blank value. This function is an iterator and you
must use the CALCULATE function to transition the row
context to a filter context. Because it iterates back in time,
LASTNONBLANK could be slow with many products and
dates.

In the case of missing end dates, such as when you have
incomplete months, you might get much better performance
if you use this formula:

UnitsAtHand (a) =

VAR LASTNONBLANKDATE = CALCULATE (MAX (DimDate[Date]), ALL (
DimProduct))

RETURN

CALCULATE (

SUM (FactProductinventory[UnitsBalanceOverwrite]),

DimDate[Date] = LASTNONBLANKDATE

)

The new version uses a LASTNONBLANKDATE variable to
store the last date with data across all products. Then, it
calculates the closing balance as of that date. However, this
measure won't work (it will return blank values) for products
with missing quantities. It also won't work if the balance
dates differ across products, such as when the quantity of
some products is recorded on December 15 and for others
it's recorded on December 16.

19.3 Summary

You'll encounter semi-additive measures when you must
calculate closing balances (both finance and inventory), and
when you need to return the last recorded value, such as
when you work with exchange rates. DAX has functions to
calculate the values at the period start and end dates. This
lesson showed you how the semi-additive functions work and
how to use them to calculate closing balances.

Lesson 20

Centralizing Time Intelligence

Your model could include many time intelligence measures
and maintaining all these formulas might become a
maintenance liability. Calculation groups can help you
centralize time intelligence formulas in one place and this
lesson shows you how. As of the time of writing, Power BI
Desktop doesn't yet support calculation groups (I'll use
Analysis Services Tabular), so you might not be able to
practice this feature right away. You'll find the DAX formulas
for this lesson in \Source\Part4\Calculation Groups.dax.

20.1 Understanding Calculation
Groups

To understand calculations groups, you need to understand
what problem they solve. It's not uncommon for Power Bl
models to have many measures. It's also not uncommon for
a measure to have various time intelligence variants. For
example, SalesAmount might have several time intelligence
measures, such as SalesAmount YTD, SalesAmount QTD,
SalesAmount YTD, SalesAmount YoY, SalesAmount YoY%, and
SO on.

If you multiply the number of time intelligence variants by
the number of other measures that need the same formulas,
you might end up with hundreds of measures. This is a
measure explosion! Typing and maintaining all these
formulas one by one in the rudimentary Power Bl Desktop
formula editor could be very time consuming and there is
always the risk of "forgetting" to apply changes and bug
fixes. Calculation groups help you overcome this issue.

20.1.1 What is a Calculation Group?

Like field groups (see the "Grouping and Binning" lesson),
which consolidate column values, a calculation group
consolidates measure formulas so that they can be
maintained in one place.

How calculation groups are presented
Power Bl presents calculation groups as a single table in the
Fields pane. This table has a single column. The users can
add this column to a report filter or slicer and select which
time intelligence feature they need. Consider the Matrix
report shown in Figure 20.1. Suppose you have
implemented calculation groups as a table called "Time
Intelligence" and the column is called "Time Measure".

In this case, the user has added a slicer bound to the Time
Measure column, which has formulas for the current value of

the measure, mount-to-date (MTD), quarter-to-date (QTD),
and YTD (year-to-day) time intelligence variants. The visual
is bound to the Reseller Total Sales measure in the Values
area, Time Measure in the Columns area, and Calendar Year
and Month Name in the Rows area. The user has selected
QTD and YTD values in the slicer. The report shows QTD and
YTD values. The user can add more measures to the report
and get time intelligence for all the measures on the report.
The model doesn't need a separate formula for each time
intelligence variation and each measure.

Calendar Year QTD YTD Total A Time Measure
2010 $489,329 $489,329 $489,329 Current
December $489,329 $489329 $489,329 MTD
2011 $5,664,610 $18,192,803 $18,192,803 B abD
January $1,538408 $1,538408 $1,538,408 W
February $1,538408 $1,538,408
March $3,549026 $3,549,026 $2,010,618 i Ve
April $£3,549,026
May | $4,027,080 $7.576,107 $4,027,080 Month Name
June $4,027,080 $7,576,107
July $713.117 $8,289,223 $713,117 Columns
August $4060,186 §11,645293 $3,356,069
September | $4,952,086 $12,528,193 $882,900 Time Measure
October §2,269,117 $14,797,300 $2,269,117
November | $3,270920 $15799,113 $1,001,804 Vilues
December | $5,664,610 $18,192,803 $2,393,690
2012 | $7,534,276 $28,193,632 $28,193,632 Reseller Total Sales

Figure 20.1 The user can select specific time intelligence
measures on the report.

When to use calculation groups?
Consider calculation groups in the following scenarios:

* Centralizing time intelligence - This is the most important
reason to use calculation groups. You can define all time
intelligence formulas in calculation groups so if you need
to make changes, you can do it in one place.

* Reducing number of time intelligence measures -
Calculation groups can help you avoid creating separate
time intelligence measures if the users are willing to forgo
some flexibility. For example, they must filter the
measures they need, and they can't insert another

measure in between the time intelligence columns (time
intelligence variations are kept together on the visual).

REAL LIFE Calculation groups alone may lead to more rigid report layouts that
end users might not tolerate well. Analysis Services Multidimensional has a
similar feature that allows models to implement “shell" time dimensions that
work in the same way. However, most real-life models might still require exposing
time intelligence calculations as separate measures for maximum flexibility. So,
calculation groups might not help you reduce the number of measures, but they
can help centralizing the formulas.

Understanding limitations

As of the time of writing, calculation groups have certain
limitations specific to Power BIl. They don't support Power BI
implicit measures, so you must use only explicit measures
(another good reason to have explicit measures even for
standard aggregations). Continuing the list of limitations, the
MDX query interface doesn't support them so they won't
work in Excel or other MDX clients. Row level security (RLS)
is not supported. Lastly, dynamic format strings (produced
by measures) are not supported but are on the short-term

roadmap.

20.1.2 Implementing Calculation Groups

Once you have your time-intelligence formulas,
implementing calculation groups is easy thanks to several
DAX functions that Microsoft added specifically for
calculation groups.

Understanding calculation group functions
Table 20.1 shows the DAX functions for calculation groups.

Table 20.1 DAX has three functions that are specifically designed for
calculation groups.

Function Description
SELECTEDMEASURE Returns a reference to the measure that is in the current context of
the calculation group.
SELECTEDMEASURENAME Returns the name of the measure that is in the current context of the
calculation group.
ISSELECTEDMEASURE(M1, Returns TRUE if one of the specified measures is in the current context of
M2,..Mn) the calculation group.

Understanding calculation group precedence

You can have more than one calculation group and a
calculation group doesn't have to handle only time
intelligence. This opens interesting scenarios for reusing
programming logic. For example, you may have a calculation
group with different formulas for computing averages, as
shown in Table 20.2.

Table 20.2 A sample calculation group for calculating averages.

Calculation Item Formula

Current SELECTEDMEASURE

Simple Average DIVIDE(SELECTEDMEASURE(), COUNTROWS(DimDate))

3-mo Average CALCULATE (AVERAGEX (VALUES(DimDate[EnglishMonthName]), [Sales]),

DATESINPERIOD (DimDate[Date], MAX (DimDate[Date]), -3, MONTH))

Then, you might have another calculation group for time
intelligence, and you want the time intelligence functions to
apply also to the averages. This requires the time
intelligence calculation group to have a higher evaluation
order than the averages calculation group. Each calculation
group has a Precedence property to let you specify the
execution order. For example, you can leave the precedence
of the averages group to its default value of zero and
increase the precedence of the other group to 10.

Understanding implementation steps

Here are the high-level steps for implementing calculation
groups:

1.Create DAX formulas for each type of time intelligence you
plan to support, such as YTD, QTD, and so on.

2.Add a special Calculation Group table to the model, such as
Time Intelligence.

3.Rename the single calculation group attribute to whatever
column name you want your users to see, such as Time
Measure.

4.Create a calculated item for each time intelligence type
and enter the appropriate formula.

20.2 Working with Calculation Groups

As | mentioned, the Power Bl Tabular backend-service
supports calculation groups, but Power Bl Desktop currently
has no user interface for you to configure them. Nor does the
SQL Server Data Tools (SSDT) tool. Microsoft is currently
working on providing write access to the XMLA endpoint of
the Tabular backend service. Once this is in place, you'll have
at least two options to implement calculation groups:

* Use Tabular Editor to make and publish the changes to
Power BI.

* Script the Power Bl published dataset in SQL Server
Management Studio (SSMS) and apply the necessary
changes.

20.2.1 Creating Calculation Groups

I'll use the first approach for this practice, and I'll use the
excellent community tool Tabular Editor
(https://tabulareditor.github.io), which | typically use to
design Analysis Services Tabular models. Calculation groups
are supported in SQL Server 2019 and | used a community
technology preview (CTP) build. Since the Power Bl XMLA
endpoint is not currently write-enabled, | deployed the
changes to an Analysis Services Tabular model. Again, you
won't be able to do this practice in Power Bl Desktop, but it
will help you understand how this important feature works so
you can use it once it's enabled in Power Bl.

Practice
Let's follow the above steps to create a calculation group in

Tabular Editor.
1.I'll use the following formulas for MTD, QTD, and YTD
calculations, which you're already familiar with:

TOTALMTD(SELECTEDMEASURE(), 'Date'[Date])
TOTALQTD(SELECTEDMEASURE(), 'Date'[Date])
TOTALYTD(SELECTEDMEASURE(), 'Date'[Date])

https://tabulareditor.github.io/

TD C\Source\AdventureWorks Tabular Model SQL 2012\Model.bim* - Tabular Editor 2.8.1

File Edit View Model Tools Tables

¢ @ Perspective: (All objects) » | Translation: (No translation) x

) Eﬂm [z [2 Expression Edtor Advar

v () Model
> Data Sources

Perspectives

Relationships

Roles

Shared Expressions

v Tables
> B8 Cum Import Tables...
> B Cusf Refresh Table Metadata...
> O3 DatJl
> B E""ﬂl Create New » l Table Alt+5
> @ GBCJgrum ¥
> B Product Calculated Table Alt+6
> BB Product Category | Calculation Group Alt+7 |
» B Product Subcategory 1

-

L

=SAl |

Figure 20.2 Tabular Editor supports calculation groups.

2.0pen Tabular Editor and then open the Analysis Services
Tabular *.bim file (unlike Power Bl Desktop, Tabular saves the
model metadata into a *.bim file). Right-click the Tables node
and click Create New -> Calculation Group (see Figure
20.2). This will add a new special table called New
Calculation Group to the list of tables. Rename the table to
Time Intelligence.

NOTE While you are in the table properties, notice that a calculation group has a
numeric Precedence property with the default value of zero. As | explained
before, you can increase it to a higher value when you have multiple and intra-
dependent calculation groups.

3.Rename the single attribute of the Time Intelligence table
to Time Measure.

4.Right-click the Time Intelligence table and click New
Calculation Item for each of the calculation items you need.

Enter the DAX formula for each calculation item, as shown in
Table 20.3.

Table 20.3 A sample calculation group for calculating averages.

Calculation Formula Description

Item
Current SELECTEDMEASURE() No time intelligence, just return the
current measure value

MTD TOTALMTD(SELECTEDMEASURE(), Calculates month-to-date
'Date'[Date])

QTD TOTALQTD(SELECTEDMEASURE(), Calculates quarter-to-date
'Date'[Date])

YTD TOTALYTD(SELECTEDMEASURE(), Calculates year-to-date
'Date'[Date])

Analysis

At the end of this practice the Time Intelligence calculation
group should look like Figure 20.3.

T C\Source\AdventureWorks Tabular Model SQL 2012\Model.bim - Tabular Editor 2.8.1

File Edit View Model Tools Calculation ltem

Ll W Perspective: (All objects) ~ Translation: (No translation) ~ | Filter
) I Elﬂm @ iz [% Expression Edtor Advanced Scripting
v @ Modd B% A& Property: Expression
> I Dt Sucrme TOTALMTD(SELECTEDMEASURE(), 'Date’ [Date]
> Perspectives
> Relationships
> Roles
Shared Expressions
v (| Tables w4]
» BR Cumency v
» A Customer Descripion
v [i] Time Inteligence Name . LAY
B Time Measure Object Type Calculation lten
&) Curent g
(i:) Emor Message
@ Y10 State - Read
@am R
v (& _New Caloulation Group Expression TOTALMTD(SELECTEDMEASURE), Date [Date])
W Attribute
™" Translations

Figure 20.3 The Time Intelligence calculation group has four
calculation items.

1.S5ave and deploy your changes. This is where you need the
write connectivity to Power Bl so you can apply the changes
directly to the published dataset while waiting for Power Bl
Desktop to catch up and provide user interface.

2.(Optional) To support more flexible report layouts, consider
creating separate measures that use the Time Intelligence
calculation group to "flatten" measures, such as:

[Sales YTD] = CALCULATE ([Sales]), 'Time Intelligence'[Time Measure] = "YTD")
[Sales QTD] = CALCULATE ([Sales]), 'Time Intelligence'[Time Measure] = "QTD")

20.2.2 Using Calculation Groups

As | explained before, calculation groups don't work with
implicit measures. Therefore, your Power Bl visual must use
explicit measures.

Practice

Let's test the changes in Power Bl Desktop by creating a
report that looks like the one shown in

Figure 20.1.

1.Add a Matrix visual and bind it to the Reseller Total Sales
measure in the Values area, 'Time Intelligence'[Time
Measure] in the Columns area, and Calendar Year and Month
Name in the Rows area.

2.Add a slicer and bind it to the 'Time Intelligence'[Time
Measure] field.

3.Select all the calculated items. Then select only a few
calculated items.

4.(Optional) Add another measure to the report.

Analysis
Notice that the report creates a time intelligence column for
each calculated item. Calculated groups are very handy but
not so flexible when it comes to report layouts. For example,
you can't reorder the columns, such as to place the Current
variation at the end of the list. You also can't add measures
to the report that are outside the time intelligence section.
Although the calculated item formula can check for
specific measures using SELECTEDMEASURENAME and set
them to empty values, the measure will still be repeated for
each calculated item in the report. Therefore, | recommend
creating separate measures that piggyback on the
calculation group variations.

20.3 Summary

Calculation groups are convenient for centralizing
management of common DAX formulas. Although not
specific to just time intelligence, calculation groups are
especially useful to centralize time intelligence calculations
because they tend to cause many measures. If users are OK
with less flexible report layouts, then you can also avoid
having a separate measure per each field that requires time
intelligence formulas. Otherwise, create measures that
“flatten” the calculation group.

PART 5

Queries

Besides calculated columns and measures, you can use DAX
to query Power Bl and Tabular models. In fact, when you
interact with a report, Power Bl generates DAX queries and
sends them to the backend Analysis Services Tabular service.
You can create your own DAX queries. This brings several
benefits, such as testing measures outside Power Bl Desktop,
exploring the model data, and implementing reports with
other tools that require you to specify a dataset query, such
as Power Bl Report Builder.

This part of the book introduces you to DAX queries. You'll
learn how to create and test measures and variables, and
how to identify and address performance bottlenecks. You'll
also implemented a paginated report with Power Bl Report
Builder. You'll find the completed exercises for this part of the
source code included in the \Source\Part5 folder.

Lesson 21

Introducing DAX Queries

Analysis Services Tabular, which is the backend service that
hosts your local and published Power Bl models, provides
two external query interfaces: Multidimensional Expressions
(MDX) and Data Analysis Expressions (DAX). MDX clients,
such as Microsoft Excel, can query the model with MDX,
while DAX-aware clients can send DAX queries. Since DAX is
the native expression language of Power Bl and Tabular, the
DAX interface is usually more efficient, so use DAX instead of
MDX.

This chapter introduces you to DAX queries. You'll learn
how to create basic DAX queries and how to test them. I'll
also show you how to auto-generate DAX queries in SQL
Server Management Studio (SSMS). You'll find the DAX
formulas for this lesson in \Source\Part5\Introducing DAX
Queries.dax.

21.1 Understanding DAX Queries

When you interact with reports, Power Bl generates DAX
queries for you, but you never see them. Behind the scenes,
there is a query behind every visual on the report. Each time
you make data changes to the visual, such as adding or
removing fields, filtering, or sorting, Power Bl generates and
runs a new DAX query. You can create your own DAX queries
to:

* Create and test measures - Let's face it. The formula
editor in Power Bl Desktop is improving but it could be
tedious. Once you get more proficient with DAX, you might
prefer to test your measures outside Power Bl Desktop.

* Profile measure performance - DAX Studio includes
features for evaluating the measure performance, such as
to check if the measure is storage engine-bound.

* Create paginated reports - Some reporting tools, such as
Power Bl Report Builder, requires you to specify a query for
every dataset. When connecting to Power Bl and Tabular
models, it makes sense to use DAX, as it's the native
Power Bl language.

To create your custom queries, you need to understand the
query syntax first.

21.1.1 Understanding Query Syntax

Power Bl supports a DAX query syntax centered on the
EVALUATE clause.

[DEFINE { MEASURE <tableName>[<name>] = <expression> }
{ VAR <name> = <expression>}]

EVALUATE <table>

[ORDER BY {<expression> [{ASC | DESC} 1}, ...]

[START AT {<value>|<parameter>} [, ...1]]

Don't worry if the query syntax looks intimidating because
many of the clauses are optional (that's why they are
surrounded with square brackets). Just like measures and

calculated columns, the query syntax is not case-sensitive,
and you can use upper or lower case, such as EVALUATE or
evaluate. Let's explain this syntax one step at a time.

Understanding the DEFINE clause

The DEFINE clause is an optional clause that allows you to
define query-scoped measures or variables using DAX
formulas. Similar to explicit measures, you can specify a
query-scoped measure by using the
TableName[MeasureName] syntax and by entering an
expression that returns a single scalar value. A query-scoped
measure can reference other query-scoped measures
defined before or after that measure.

NOTE A DAX query can define query-scoped measures and variables only. You
can't define calculated columns. Calculated columns must be created in Power Bl
Desktop at design time.

Understanding the EVALUATE clause

The EVALUATE clause is the only mandatory clause. A query
can have only one EVALUATE clause. Think of EVALUATE as
the SELECT statement in the SQL language. EVALUATE must
be followed by a single table or an expression that produces
a table. The expression can reference query-scoped
measures or table variables that were previously introduced
with the DEFINE clause.

Understanding ORDER BY and START AT clauses

An optional ORDER BY clause can be added to sort the
results. The optional START AT clause provides a mechanism
to request the results at a spot in the ordered set. The
ORDER BY and START AT clauses are closely related, and you
can't use START AT without using ORDER BY. Each item
following the START AT clause maps to one of the ORDER BY
expressions. The query might specify either a starting value
or the name of a parameter that will contain the starting
value, such as @Month.

21.1.2 Choosing a Query Tool

Microsoft has extended SQL Server Management Studio
(SSMS) with DAX query capabilities. There is also DAX Studio

- a community tool designed to help you test DAX queries.
Table 21.1 compares the two tools side by side based on
their support for DAX queries.

Table 21.1 This table compares SSMS and DAX Studio for working with
DAX queries.

Feature SSMS DAX Studio

Installation Standalone desktop app Standalone desktop app, Excel
add-in

Syntax coloring Yes Yes

Intellisense Yes Yes

Auto-generating DAX No Yes

Defining and expanding measures No Yes

Profiling performance No Yes

Tracing queries No (need to use SQL Profiler) Yes

Integrated function reference No Yes

Integrated Data Management Views No Yes

(DMVs)

Using SSMS

SSMS is the Microsoft premium tool for all tasks related to
SQL Server (not just DAX). SSMS has two features that are
specifically designed to help you work with DAX queries:

* DAX Query Editor - Once you connect to a Power Bl or
Tabular model, right-click the database and click New
Query -> DAX. To connect to a Power Bl Desktop model, in
Object Explorer connect to Analysis Services using the
localhost:port connection string (you can obtain the port
from DAX Studio as the lesson "Understanding storage"
demonstrated). This opens a new query editor, where you
can type and execute your DAX query.

* DAX Query Designer - Right-click the database but instead
of New Query, click Browse. This opens the same DAX
Query Designer that is available in Power Bl Report
Builder. It can auto-generate DAX queries as you drag and
drop fields. I'll demonstrate this feature in the "Using
Power Bl Report Builder" lesson.

Using DAX Studio

DAX Studio is a free community tool, created and maintained
by the community, including prominent Microsoft Most
Valuable Professionals (MVPs). It's specifically designed for
working with DAX and it has features that SSMS doesn't
have, such as analyzing the query performance and
formatting DAX code. Because of this, | recommend you use

DAX Studio.

21.2 Working with Basic Queries

In this practice, I'll introduce you to DAX Studio IDE and how
you can use it for testing custom DAX code. Then, you'll
execute a few sample DAX queries.

21.2.1 Getting Started with DAX Studio

You can download and install the latest version of DAX Studio
from https://daxstudio.org/. By default, the tool saves query
files with a *.dax file extension, which are just text files that
you can open with any text editor.

Practice
Let's open an existing *.dax file in DAX Studio and get
familiar with its environment.

1.0pen Power Bl Desktop and load the Adventure Works file
that you worked on in Part 4 of this book or use the one
included in the \Source\Part5 folder.

2.0pen DAX Studio and click Cancel in the connection
window.

3.Click File -> Open, and then open the
Source\PartS\Introducing DAX Queries.dax file.

a.When prompted to connect, choose the "PBI / SSDT" option
and connect to the Adventure Works model.

Once DAX Studio connects, it displays the model metadata in
the left Metadata pane (see Figure 21.1). The Metadata
pane has three tabs. The Metadata tab fulfills a similar role
as the Fields pane in Power Bl Desktop, but it also shows
hidden objects, such as the Power Bl auto-generated date
tables. The Functions tab lists the DAX functions organized
by categories. You can drag a function and drop it in the
query to see its syntax.

https://daxstudio.org/

¥ DaxStudio - 28.1 -

Home Help @
} a X b !.A-x- A 3 Comment P r X % () Sean (8] Bat ’ g
B = a % Uncomment . ™ Right Layout v/
Run el Cloar Oufput Format Al Qumy Server — Connect Refresh
Cache » Query i o Merge XML Queries Plan Timings tefm ttom Layout Metadala
Query Fdit Format Find Traces Server Timings Connection
Introducing DAX Queries dax X v
Metadata S MR /" Returns all rows and colums Tron the ReselTersales table -
PUEVALUATE (FactRese]lerSales) -
v i
Adventure Wors 4'/* Returns rows with SalesAmount exceeding 20,000¢/
- JE\ALUATE FILTER(FactRese]lerSales, [53195M0unt]>20000)
19 Model Il g
|| 7/* Returns rows with SalesAnount exceeding 20,000 sorted by OrderDateey in ascending order
I CustomerBase 11| 8 followed by SalesAnount in descending order*/
0 EVALUATE EILTER(FactResellerSales, [SalesAmount]»>20000)
[ﬂDateTableTemplate_edJ 10/ ORDER. BY [OrderDatekey], [SalesAmount] DESC
‘ 11
' ﬂ DimCustomer 12//% Returns rows with SalesAmount exceeding 20,000 sorted by OrderDatekey in ascending order
: 13 followed by SalesAmount in descending order starting from 1/1/2006 */
! ﬁD\mDate 14 EVALUATE FILTER(FactResellersales, [SalesAmount]>20000)
il 15 DRDER BY [OrderDateey], [Salesamount] DESC
1 Din€rmployee 1 STATT AT 20060101
] DimMyDate]\ ,* Sanes lesﬂts & the above Guery wuhunt nsmcj tine START Ar dause (cr v
[ﬁDimProduc! 100%% | }
I DimProductCategory
I DimProductSubcategor hesls "4
I ﬂDJmReseJIer Productkey OrderDateKey DueDateKey ShipDateKey Resellerkey EmployeeKey Promotionkey CurrencyKey SalesTerritoryKey SalesOrderNumt
| ﬂDimSalesTerritw M6 10501 2010513 20110508 8 285 1 100 55044918 4]
g 8 20110801 20110613 20110808 278 285 1 100 55045300
I 3DmehIpDate
I M9 M08 ANMR2 20m0407 46 29 1 100 15044284
)] Fctinenetals B0 01009 0N 0105 6B 2&3 | 10 303084
|] FactResellrSales W00 2010513 20110508 U6 i 1 100 3504528
| ﬁFactSaIesOuota M9 2110801 20110813 20110808 623 k) 1 100 35045308
b) LocalDtelable 043729 M0 M0 2001105 U6 i) 1 100 35046066
| ﬂlacalDateTab\e 0Sdcll— M 0mM009 1m0 20M108 U6 23 1 100 3 5046066 =
e '\ ‘ Uk IMINGH NUNRIZ INTINANT A W) 1 4Snu47as
T 1\ 4
o) |

Metadata Funchons DMV Outputz Results | Query History

[n1,Col1 li0(_‘alhx:nz:l:5?536IS,U‘H.\H 1615 26rows 00000

Figure 21.1 DAX Studio is specifically designed for working
with DAX queries.

Output

The DMV tab lists dynamic management views (DMVs).
Analysis Services provides dynamic management views
(DMVs) to help administrators monitor the health of a server

instance, to diagnose problems, and to tune performance.
You can use SQL-like SELECT statements to query these
views just like you can query a SQL Server relational table.
The views are documented at
https://docs.microsoft.com/sqgl/analysis-
services/instances/use-dynamic-management-views-dmvs-
to-monitor-analysis-services.

TIP Looking for a quick way to get a list of all measures, their formulas, and other

metadata, such as display folders? Just drag the MDSCHEMA_MEASURES DMV and
drop it in the query. Then, run the resulting SELECT statement.

The right pane is where your DAX queries go. You can have
multiple files open and you can have multiple queries in a
file. If you press the Run button in the ribbon, DAX Studio
runs all the queries in the file loaded in the active tab. Or,
you can select a query and click Run (or F5) to run just this
query. There are three tabs in the bottom of the query pane:

* Qutput - Gives you high-level execution statistics, such as
the count of rows in the query results and the query
execution time. This tab also shows the error text if a
formula generates an error or the query syntax is
incorrect.

* Results - By default, the query results are shown in a grid
in the Results tab. But you can use the Output ribbon
button to save the results in a tab-delimited text file if you
prefer.

* Query History - Lists previously run queries. You can
double-click a query to load it in the query pane.

Many other features are available in the ribbon, such as
formatting queries, commenting, and analyzing the query
performance.

Analysis

DAX Studio can connect to models hosted in Analysis
Services Tabular or Power Bl Desktop. You must have your
file open in Power Bl Desktop in order for DAX Studio to
connect to its backend Analysis Services Tabular instance
when querying Power Bl Desktop models.

https://docs.microsoft.com/sql/analysis-services/instances/use-dynamic-management-views-dmvs-to-monitor-analysis-services

21.2.2 Running DAX Queries

Next, you'll execute a few basic DAX queries in DAX Studio to
get familiar with both the tool and the query syntax.

Practice
You'll start with a barebone DAX query and enhance it. Select
the following query and click F5 to run it.

EVALUATE FactResellerSales

Output

The query will run for a few seconds due to the large number
of rows. Once it's done, the Results tab shows all rows and
columns from the FactResellerSales table.

Analysis

EVALUATE <table> is equivalent to SELECT * FROM <table>
in SQL.

Practice

The EVALUATE clause can use any function that returns a
table, such as the FILTER function. The following query
returns the rows with SalesAmount exceeding 20,000:

EVALUATE FILTER(FactResellerSales, [SalesAmount] > 20000)

The following query adds the ORDER BY clause to sort the
results by OrderDateKey in an ascending order, followed by
SalesAmount in a descending order:

EVALUATE FILTER(FactResellerSales, [SalesAmount]>20000)

ORDER BY [OrderDateKey], [SalesAmount] DESC

The following query uses the START AT clause to limit the
results to start at January 15t, 2013 just like a SQL query can
use a WHERE clause to filter the output:

EVALUATE FILTER(FactResellerSales, [SalesAmount]>20000)
ORDER BY [OrderDateKey], [SalesAmount] DESC
START AT 20130101

The following query returns the same results without using
the START AT clause.
EVALUATE FILTER(FactResellerSales, [SalesAmount]>20000 && [OrderDateKey]

>=20130101)
ORDER BY [OrderDateKey], [SalesAmount] DESC

21.3 Summary

You use the EVALUATE statement with optional clauses to
define a custom DAX query. Both SSMS and DAX Studio can
execute DAX queries, but | recommend you use DAX Studio
because it has more features and it's specifically designed
for working with DAX.

Lesson 22
Creating and Testing Measures

As you become more proficient with DAX, you might find the
Power Bl Desktop formula editor is somewhat tedious. One of
the main benefits of custom DAX queries is to create and
test measures outside of the Power Bl Desktop. This way you
can quickly make changes and ensure that the measure
returns the expected results.

This lesson teaches you how to work with measures and
variables in custom queries. It shows you how to create
queries to test measures. You'll find the DAX queries in the
\Source\Part5\Creating and Testing Measures.dax file.

22.1 Getting Started with Query
Measures

You already know how measures work and you've created
various explicit measures in the previous lessons. You just
need to learn a few more things to transition your knowledge
to custom queries. In Power Bl Desktop, you test measures
by creating reports, which in turn auto-generate and execute
DAX queries. In DAX Studio, you're responsible for creating
the query, so let's start there.

Calendaryear e SalesAmount SalesAmount (gm) ¥YTD
2011 December $1,577.39 $14412,059
§2,497,473

$1,949,258 $4,445731
§1,286,451 §5,733,182 O_O
§221 57

SalesTerritoryCountry

1
5
1
:
1
:
1
201
201
1
1
:
2013

$2,340,116 $2 340,116

Total $53,233,834

Figure 22.1 You can use a similar report to generate a test
query.

22.1.1 Capturing Test Queries

Unfortunately, DAX Studio doesn't provide a query template,
so you need to fill in this gap by creating a query to test your
measure(s). In the first lesson "Introducing DAX", | showed
you how to capture queries using the Performance Analyzer
feature in Power Bl Desktop. DAX Studio has a similar
feature. Let's try it to capture a query generated by Power BI
Desktop so you can use it as a query template for testing.

Practice
In this practice, you'll capture and examine a DAX query
from Power Bl Desktop.

1.0pen the \Source\Part5\Adventure Works.pbix file in Power
Bl Desktop.

2.In Report View, select the "Creating and Testing Measures"
tab to view the report shown in
Figure 22.1. This report has a Matrix visual and two slicers.

3.0pen DAX Studio. Choose the "PBI/SSDT Model"
connectivity option and select the Adventure Works model. If
you don't see it in the dropdown list, make sure that Power BI
Desktop is open with the Adventure Works model loaded.
Click Connect.

4.In the DAX Studio ribbon, click the "All Queries" button to
capture queries sent from Power Bl Desktop to the backend
Analysis Services Tabular instance. This adds another tab "All
Queries" to the query pane.

5.In Power Bl Desktop, change a slicer. For example, drag the
CalendarYear slicer to expand or narrow the filter selection.
This will cause Power Bl to generate and execute a DAX
query.

6.In DAX Studio, click the "All Queries" tab to select it. You
should see two queries (one resulting from the slicer change
and another that provides data to the visual).

7.Usually, the visual query has a longer duration. Double-
click that query to load it in the query pane.

Output
The query behind the Matrix visual should look like this:

DEFINE

VAR __ DSOFilterTable = FILTER(KEEPFILTERS(VALUES('DimDate'[CalendarYear])),
‘DimDate'[CalendarYear] >= 2011)

VAR _ DSOFilterTable2 = TREATAS({"United States"},
'DimSalesTerritory'[SalesTerritoryCountry])

EVALUATE

TOPN(502,

SUMMARIZECOLUMNS(

ROLLUPADDISSUBTOTAL(
ROLLUPGROUP('DimDate'[CalendarYear], 'DimDate'[EnglishMonthName],
'DimDate'[MonthNumberOfYear]), "IsGrandTotalRowTotal"),

__DSOfFilterTable,

__DSOfFilterTable2,

"SumSalesAmount", CALCULATE(SUM('FactResellerSales'[SalesAmount])),

"SalesAmount__gm__ YTD", 'FactResellerSales'[SalesAmount (gm) YTD]

),
[IsGrandTotalRowTotal], O,
'DimDate'[CalendarYear], 1,
'DimDate'[MonthNumberOfYear], 1,
‘DimDate'[EnglishMonthName], 1

)
ORDER BY

[IsGrandTotalRowTotal] DESC,

‘DimDate'[CalendarYear],

'‘DimDate'[MonthNumberOfYear]

Analysis

The query uses the DEFINE clause to declare two table
variables that correspond to the two slicers. Although the
second variable uses a different syntax (TREATAS), the exact
syntax doesn't matter. What matters is that these variables
apply filters (think of the WHERE clause in a SQL SELECT
statement) that return a subset of the data for testing. To
make things simple, forget about TREATAS and use just the
FILTER function.

NOTE Although not required for a simple filter, the KEEPFILTERS function
preserves any previous filters so that both the new and previous filters are
applied. Suppose you want to filter the table T on the column C. The following
expression returns rows from T where [C] = 1 or [C] = 2. Although there is filter
T[C]=3, only the latest (innermost) filter takes effect:
CALCULATETABLE(CALCULATETABLE (T, T[C]=1 || T[C]=2), TIC]=2 || T[C]=3)

Whereas, the next formula returns rows from T where [C]=2. In other words,
KEEPFILTERS returns the intersection of both filters:
_(l:‘EACL]C_LéISATETABLE(CALCULATETABLE(T, KEEPFILTERS(T[C]=1 || T[C]=2)), T[C]=2 ||
Next, EVALUATE marks the start of the main query. EVALUATE
needs to be followed by a table expression. Power Bl uses
the TOPN function to return data in chunks of 502 rows at a
time. As you scroll down the visual, Power Bl fetches more
rows as needed. Nested in TOPN is SUMMARIZECOLUMNS
that returns the data grouped by the fields in the data visual:
CalendarYear, EnglishMonthName, and MonthNumberOfYear.
SUMMARIZECOLUMNS accepts additional constructs, such
as ROLLUPGROUP, to generate totals. It also projects the two
measures added to the Values area of the visual:
SumSalesAmount (an implicit measure so Power Bl generates
its aggregation formula), and Sales Amount_qum__YTD (an

existing measure). Notice that the table variables are passed
as filter arguments to SUMMARIZECOLUMNS to evaluate the
measures only for a subset of data. Lastly, the query orders
the results using the ORDER BY clause.

22.1.2 Creating a Test Query Template

Although you can run the query as it is, it might make be
preferable to simplify it and save it so that you can reuse it
as a template for testing measures in DAX.

Practice
Here is the simplified version:

DEFINE
VAR _ DSOFilterTable = FILTER (KEEPFILTERS (VALUES (
'DimDate'[CalendarYear])),
‘DimDate'[CalendarYear] >= 2011)
VAR _ DSOFilterTable2 = TREATAS ({ "United States" },
‘DimSalesTerritory'[SalesTerritoryCountry])
EVALUATE
SUMMARIZECOLUMNS (
‘DimDate'[CalendarYear],
‘DimDate'[EnglishMonthName]
__DSOfFilterTable,
__DSOFilterTable2,
"SumSalesAmount", CALCULATE (SUM ('FactResellerSales'[SalesAmount])),
"SalesAmount__gm__YTD", 'FactResellerSales'[SalesAmount (qm) YTD])

TIP To format your query nicely so you can read it better, select all the text of the
query and click the Format Query button in the ribbon. You can also use this
feature to ensure that the query is syntactically correct because the formatter
validates the query and it will show errors in the Output tab in case of syntax
errors.

Output
Select all the text of the simplified query and run it. Compare
your results with Figure 22.2.

CalendarYear EnglishMonthName SumSalesAmount SalesAmount_gm_YTD

2011 January 1221427.2382 1221427.2382
2011 March 1570069.9481 2791497.1863
2011 May 3386610.98 6178108.1663
2011 July 549336.8611 6727445.0274
2011 August 2744093.6988 9471538.7262

“mher 10126370.9351

Figure 22.2 The results generated by the simplified query.

Analysis

This query removes the total rollup, the MonthNumberOfYear
column (not needed unless you want to sort the results by
it), and the ORDER BY clause. To recap, the important steps
for creating a query to test measures are:

1.Define the appropriate filters as table variables depending
on how you want to filter the data.

2.Use SUMMARIZECOLUMNS to group by the appropriate
fields.

3.Pass the table variables as filter arguments to
SUMMARIZECOLUMNS.

4.Project the measures you want to test as extended columns
in SUMMARIZECOLUMNS.

Now you have a generic query that you can reuse to create
and test your measures!

22.2 Working with Measures

You can add your explicit measures in the DEFINE portion of
the query. You can also retrieve the definition of existing
measures in the model so that you can work on or reuse
their formulas. The following practices demonstrate both
approaches.

22.2.1 Retrieving Measure Formulas

Suppose you want to make changes to an existing measure
formula. You'll use DAX Studio to go through several
iterations. You might find this approach more convenient
than using the Power Bl Desktop formula bar and waiting for
the report to refresh every time you make a change.

Practice
DAX Studio can retrieve the formula for existing measures.

1.In DAX Studio, click the magnifying glass in the metadata
pane and type YTD. DAX Studio searches the model
metadata and shows all fields whose name contains "YTD".

2.Right-click the SalesAmount (gm) YTD measure and click
Define Measure.

Output

DAX obtains the measure formula and immediately adds it
below the DEFINE clause in the first query in the active query
pane.

DEFINE

---- MODEL MEASURES BEGIN ----

MEASURE FactResellerSales[SalesAmount (gm) YTD] = IF(
ISFILTERED('DimDate'[Date]),

ERROR("Time intelligence quick measures can only be"),
TOTALYTD(SUM('FactResellerSales'[SalesAmount]), 'DimDate'[Date])

)
---- MODEL MEASURES END ----

Analysis

Recall that all measures defined in a query are scoped to
that query only. Therefore, a query-scoped measure
overshadows a measure with the same name in the model.

This is great because you can change and finetune the
measure formula in DAX Studio. Once you're satisfied with
the changes, you can copy the formula (after the equal sign)
and paste it in Power Bl Desktop to apply the changes to the
model.

22.2.2 Creating Custom Measures and Variables

Now that you know how DAX queries work, you're ready to
create and test your own measures in DAX Studio.

Practice

The following query defines a PendingOrderCount measure
that returns the count of open orders for the first five days in
January 2013.

DEFINE

MEASURE FactinternetSales[PendingOrdersCount] =

VAR EOP = MAX (DimDate[Date])

RETURN

CALCULATE (

DISTINCTCOUNT (FactinternetSales[SalesOrderNumber]),
FactinternetSales[ShipDate] >= EOP,
FactinternetSales[OrderDate] <= EOP,

ALL (DimDate)

)

VAR DatefFilter =

FILTER (

KEEPFILTERS (VALUES ('DimDate'[Date])),
'DimDate'[Date] >= DATE (2013, 1, 1) && 'DimDate'[Date] <= DATE (2013, 1, 5
)

)
EVALUATE

SUMMARIZECOLUMNS (
‘DimDate'[Date],

DatefFilter,

"PendingOrdersCount”, FactinternetSales[PendingOrdersCount])

Output

Select the entire query text (including comments is OK) and
press the Format Query button in the ribbon to format the
query and ensure that there are no syntax errors. Then, click
the Run Query button (or F5) to execute the query. Compare

your results (Results tab) with Figure 22.3.

Date PendingOrdersCount

1/1/2013 116
1/2/2013 109
1/3/2013 119
1/4/2013 124

Figure 22.3 The results of the query with the
PendingOrdersCount query-scoped measure.

Analysis

The query starts by defining the measure formula
immediately after the DEFINE statement (you can define
variables before measures if you prefer). Because you want
to group results by just one field (DimDate[Date]), there is no
need for a second table variable to filter data further. To
make it more intuitive, | renamed the first table variable to
DateFilter and changed the filter expression to filter the first
five days in January 2013.

If you need more explanation about how the
PendingOrderCount measure works, refer to the "Changing
Filter Context" lesson. To recap, the measure declares an EOP
variable that returns the last date in the current date context
(this will be the date that appears in each row in the query
results). Then, the measure calculates the distinct count of
the SalesOrderNumber column values where the current date
falls between the order date and ship date.

22.3 Summary

You can use DAX Studio to create and test measures and
variables. This lesson introduced you to the query
capabilities of DAX Studio. It showed you how to retrieve the
measure formulas from the model and how to work with
custom measures. One of the most useful features of DAX
Studio is that it can help you profile the query performance,
and this is the subject of the next lesson.

Lesson 23

Optimizing Query Performance

The Power Bl in-memory engine (xVelocity) gives your
reports a significant performance boost because the
computer memory is the fastest storage medium. However,
every technology has a limit and xVelocity is no exception.
Inefficient DAX measures can slow down your reports and
slow reports annoy end users.

This lesson shares practical tips to help you troubleshoot
and optimize your DAX measures. I'll show you how to find
which visual slows down a report and how to analyze the
query performance. I'll also share best practices for
optimizing DAX measures and I'll show you how to apply
them to optimize a slow measure. You'll find the query
examples in \Source\Part5\Optimizing Query
Performance.dax.

23.1 Understanding DAX Performance

"This report is slow!" | hope you never hear this, but the
chances are that you will sooner or later. No one likes
watching a spinning progress indicator and waiting for the
report to show up. DAX calculated columns, implicit
measures, and simple "wrapper" measures are unlikely to
impact performance. Not so much, however, about more
complex explicit measures.

23.1.1 Understanding Query Execution

Understanding the query execution requires understanding
where the query time is spent. Analysis Services Tabular (the
backend service that hosts Power Bl models) has two
engines: a formula engine and a storage engine.

About the formula engine

When Analysis Services Tabular receives a DAX query, its
formula engine parses the query, evaluates the formulas,
and creates an execution plan. The formula engine can also
take over more complicated computation tasks. If the
formula engine determines that a calculation can be run
more efficiently (for example, an IF function or the LASTDATE
function), it adds a callback to itself in the storage engine
query, so that it can process some of the work. Though the
formula engine is single threaded per query, it can be called
in parallel from the multiple threads in the storage engine.

About the storage engine

The xVelocity storage engine (often referred to by its old
name VertiPaq) is designed to efficiently scan the in-memory
data. The lesson "Understanding storage" covered the
xVelocity storage engine in more detail. The execution plan
produced by the formula engine will likely require many
queries for data retrieval that the formula engine sends in
parallel to xVelocity. The storage engine also supports basic

aggregates and predicates, such as WHERE, SUM, and
GROUP BY.

TIP As a general best practice, try to rewrite your DAX measures in such a way
that they push as much work to the storage engine as possible. Because the
storage engine is highly parallel, queries typically benefit from more CPU cores,
faster memory, and more CPU cache. Of course, when you publish your models to
Power BI, you have no control over the hardware, unless your organization is on
Power Bl Premium.

23.1.2 Understanding Optimization Steps

In general, DAX performance optimization involves four high-
level steps:

1.ldentify slow queries

2.ldentify slow measures

3.Find the source of performance degradation
a.Apply optimizations and retest

Identifying slow queries

It's best to analyze the query performance in an isolated
environment. For Power Bl, this means opening the model
locally in Power Bl Desktop as opposed to testing a published
model. In the previous lesson, | showed you how to capture
the queries behind the report visuals in DAX Studio (recall
that you can also use the Power Bl Desktop Performance
Analyzer to get the queries). Once you capture the queries,
you can pinpoint the slow queries by analyzing their
duration.

If you can't obtain the Power Bl Desktop file, you might
still be able to profile a published report if it's deployed to a
workspace in a Power Bl premium capacity. To do so, you can
connect DAX Studio (or SQL Server Profiler) to the XMLA
endpoint of that workspace.

Be aware of the internal caching that Power Bl uses to
cache query results both in Power Bl Desktop and Power Bl
Service. For example, if you select another report page and
go back to the previous page, you may not capture any
queries because Power Bl reuses identical query results.

TIP Suppose you have a report with multiple pages and one of the pages is slow
to load. You can select another report page and close Power Bl Desktop. Then,
open Power Bl Desktop and load the file. Power Bl Desktop should load the last
active page. Once you set up DAX Studio for tracing, click the slow page to
capture its queries.

Identifying slow measures

A visual can have multiple measures. The principle of
elimination is the best way to find which measures
deteriorate performance the most. Once you capture the
query, load the query in DAX Studio (or SSMS), and comment
its measures one by one to exclude them from the query.
Then, execute the DAX query and see if it runs any faster.

NOTE Analysis Services also has caches and it may service queries from the
cached results. When testing DAX queries, it's important to clear these internal
caches before executing the query to avoid skewed results. If you expand the Run
button in the DAX Studio, you'll see a "Clear Cache and Run" option, which will
clear the cache and run the query in one step. Or, you can click the "Clear Cache"
ribbon button before you run the query.

Finding the source for performance degradation

This is the most important step. Start by finding in DAX
Studio if the query is formula engine or storage engine
bound. You can also examine the physical and logical plans
by enabling the Query Plans button, but these plans are very
verbose and difficult to interpret. You'd probably find yourself
alternating between this step and the next one until you
pinpoint the performance culprit.

Applying optimizations

This step is more art than science. Here are some general
best practices for optimizing DAX:

1.0ptimize storage - Focus on optimizing storage if the most
time is spent in the storage engine. Use the VertiPaq
Analyzer (see Lesson 3) to understand column cardinality
and consumed storage. Remove unused high-cardinality
columns. Use a good star schema with limited snowflaking.
Disable built-in date tables if you don't use them and they
consume a lot of storage. Use more compact data types,
such as Whole Number instead of Decimal Number, if you
don't need decimals. Consider denormalizing commonly used
fields from large dimensions into the fact tables.

TIP Relationships on high-cardinality columns, such as Sales[CustomerKey] ->
Customer[CustomerKey] could be expensive with millions of rows. Consider
eliminating these joins by duplicating commonly used dimension columns into
the fact table so that the entire query can be answered by just one table.

2.Materialize when possible - Instead of a performance
intensive measure, consider materializing the whole measure
or a part of its formula as a calculated column or a custom
column in Power Query or SQL. You'll see an example of this
technique in a moment.

3.Use CALCULATE filters --- Instead of using the FILTER
function to filter entire tables, use filters in CALCULATE. For
example, instead of writing CALCULATE(<expression>,
FILTER (<table>, <criteria>)), use
CALCULATE(<expression>, <criteria>). Refer to Lesson 7 for
examples illustrating this approach.

4.Use variables - Variables are evaluated once. This results in
a faster execution plan when the same expression appears
multiple times in a formula.

23.2 Finding and Fixing Performance
Issues

Now that you know the essentials of DAX performance
optimization, let's put what you've learned into practice. The
"Optimizing Query Performance" page in the
\Source\Part5\Adventure Works.pbix file is slow. You need to
investigate the performance degradation and, if possible, fix
it.

23.2.1 Identifying Slow Queries

This report page has two visuals. To start with, you'll use DAX
Studio to identify which query slows down the overall report
execution.

Practice
To avoid dealing with cached queries, make sure that Power
Bl Desktop opens with another page selected.

1.0pen the \Source\Part5\Adventure Works.pbix file in Power
Bl Desktop.

2.Select another page, such as the "Creating and Testing
Measures" page. Remember to save the file and close Power
Bl Desktop.

3.0pen Power Bl Desktop again and load the Adventure
Works.pbix file. The Report View should open with the
"Creating and Testing Measures" page active.

4.0pen DAX Studio and connect to the Adventure Works
model using the PBI/SSDT connectivity option.

5.Click the All Queries button in the ribbon.

6.Switch to Power Bl Desktop and select the "Optimizing
Query Performance" page. Wait for the page to load.

7.Back to DAX Studio, select the All Queries tab in the query
pane. You should see two queries captured. One of the
queries has a significantly higher duration (about 10
seconds).

Analysis

To make sure Power Bl Desktop doesn't cache queries, you
need to open it with another page (you can add a blank page
if you prefer). Once DAX Studio captures the queries, you
can quickly identify the slowest queries so you can focus on
them.

23.2.2 Identifying Slow Measures

Next, if the query has multiple measures, you need to
identify which one(s) are the most performance intensive.

Practice

1.Double-click the slow query to load it in the query pane.
You should see this DAX code:

DEFINE VAR _ DSOFilterTable =

FILTER(KEEPFILTERS(VALUES('DimDate'[Datel])), 'DimDate'[Date] >= DATE(2014,
1,1))

EVALUATE

TOPN(502,

SUMMARIZECOLUMNS(

ROLLUPADDISSUBTOTAL('DimDate'[Date], "IsGrandTotalRowTotal"),
__DSOfFilterTable,

"OrderCount_WoW", 'FactinternetSales'[OrderCount WoW],
"OrderCount7", 'FactinternetSales'[OrderCount7],

"OrderCountl4", 'FactinternetSales'[OrderCountl14]

),
[IsGrandTotalRowTotal], O,

'DimDate'[Date], 1)

ORDER BY [IsGrandTotalRowTotal] DESC, 'DimDate'[Date]

2.Comment OrderCount?7 and OrderCountl4 measures by
typing a double hyphen (--) in front of the corresponding
lines so that only the OrderCount. WoW measure will be
used. Remove the comma at the end of the line for this
measure.

3.Expand the Run button in the ribbon and select "Clear
Cache then Run". Click the Run button to clear the cache and
run the query.

Analysis

By isolating measures, you determine that the "OrderCount
WoW" measure is the slowest (it takes about 5 seconds to
execute). You used the "Clear Cache then Run" option to

clear all runtime caches so that the query executes without
caching.

23.2.3 Finding the Source

Next, you need to find which specific DAX formula is the
performance culprit. Start with a high-level analysis of where
the query time is spent.

Practice

Let's execute the query again but this time you'll enable the
Server Timings feature in DAX Studio.

1.If the All Queries button is pressed, press it to stop tracing
queries.

2.Click the Server Timings button in the ribbon. This adds a
new "Server Timings" tab in the query pane.

3.Click the Run button again to run the query. Once the
results come back, switch to the Server Timings tab (see
Figure 23.1).

Total SE CPU Line Subclass Duration CPU Rows KB Query
4551ms 2912ms 118 Scan 9 0 1 1 SELECT DCOUNT (‘Factintern
o 1,518 Scan 8 0 1 1 SELECT DCOUNT ('Factinter
FE WSE 546 Scan 7 0 1 1 SELECT DCOUNT (‘Factinte
1998 ms 2553ms 1526 Scan 7 0 1 1 SELECT DCOUNT (‘Factinter
43.9% 56.1% 1,606 Scan 7 16 1 1 SELECT DCOUNT ('Factintern.
—_ 1,582 Scan 7 16 1 1 SELECT DCOUNT ('Factinternet
SE Queries SE Cache 626 Scan 7 0 0 1 SELECT DCOUNT ('Factinternet
804 0 1,590 Scan 6 16 1 1 SELECT DCOUNT ('Factinterne’
0.0° 1,770 Scan 6 16 0 1 SELECT DCOUNT ('Factinterr
1,542 Scan 6 0 1 1 SELECT DCOUNT ('Factinter
1,778 Scan 6 16 0 1 SELECT DCOUNT ('Factinte.
1,554 Scan 6 0 4 1 SELECT DCOUNT ('Factinten
" Cran c ~HTOT DEOLINT ['Fact~?

Figure 23.1 Use the Server Timings tab to get an idea of
where the query time is spent.

Analysis
The Server Timings tab reveals important information about
the query execution. The metrics on the left side are:

* Total - the total execution query time.

* SE CPU - The estimated storage engine time if the query
was executed on a single thread.

* FE - The query time spent in the formula engine.

* SE - The query time spent in the storage engine.

* SE Queries - The number of queries sent to the storage
engine.

* SE Cache - The percentage of queries that were answered
by the storage engine cache.

In this case, most of the query time was spent in the storage
engine, which is preferable. The query resulted in 804
queries to the storage engine. In the right pane, you can see
the actual storage engine queries and sort them by duration.
Most of these queries uses the DCOUNT function to count
distinct orders.

23.2.4 Applying Optimizations

Distinct count is a very expensive operation and the best
way to optimize is to avoid it if possible. Let's see how this
approach could work in this case.

Practice

Let's add the definition of the "OrderCount WoW" measure to
the query.

1.In the Metadata pane, hover over the magnifying class and
type WolW to locate the measure.

2.Right-click the "Order Count WoW" measure and click
"Define and Expand Measure". This adds the definition of this
measure and all dependent measures in the DEFINE query
clause. Now you can see that "OrderCount WoW",
OrderCount?7, and OrderCountl4 measures use the
OrderCount measure which has this formula:

MEASURE FactinternetSales[OrderCount] =
DISTINCTCOUNT(FactinternetSales[SalesOrderNumber])

3.Replace the DISTINCTCOUNT function with this formula
which uses SUMX.

MEASURE FactinternetSales[OrderCount] = SUMX(FactinternetSales,
IF(FactinternetSales[SalesOrderLineNumber] = 1, 1))

4.Run the query again with Server Timings enabled. Now the
query executes in only 87 milliseconds!

Analysis

Instead of counting distinct orders, the formula checks if the
current row in FactinternetSales is the first order line item
and returns one if this is the case (otherwise the IF
statement returns a blank value). Then, SUMX sums the
result to count the first line items in every order that's in the
filter scope. You can now update the OrderCount measure in
the Adventure Works model with this formula and the report
will run instantaneously.

23.3 Summary

DAX can humble even experienced developers. Slow reports
are typically caused by inefficient DAX formulas. Instead of
throwing in more hardware (if this is even an option), plan to
analyze and optimize your DAX measure relentlessly using
the techniques you learned in this lesson. DAX Studio can
help you analyze the query performance and test different
measure versions to find the one that performs the best.

Lesson 24

Using Power Bl Report Builder

One of the most prominent Power Bl architectural strengths
is that it doesn't lock you into just one reporting tool. Besides
Power BI, you can use a reporting tool of your choice, such as
Excel, Power Bl Report Builder, or any MDX or DAX-aware
third-party tool, to analyze your data. Some reporting tools,
however, are less interactive and might require a query for
each dataset. In this lesson, you'll learn how to create and
parameterize a DAX query in a Power Bl Report Builder
report. You'll find the query examples in \Source\Part5\Using
Power Bl Report Builder.dax.

24.1 Understanding Power Bl Report
Builder

Long before Power Bl was Microsoft SQL Server Reporting
Services (SSRS) - the Microsoft flagship reporting tool for
creating paginated reports. Paginated reports are traditional,
paper-oriented reports that are designed to be printed or
exported. Although lacking in interactivity, SSRS reports
have always excelled in extensibility. You'll be hard pressed
to find a requirement that you can't meet with SSRS reports,
although creating paginated reports is not as easy as Power
Bl reports and requires specific report authoring skills.

24.1.1 When to Use Report Builder

Microsoft provides two designers for authoring paginated
reports. The SQL Server Data Tools (SSDT) Report Designer
integrates with Visual Studio and targets Bl professionals.
Report Builder is for business users willing to create and test
reports outside Visual Studio. In April 2019, Microsoft
introduced a special version of this tool called Power Bl
Report Builder that's optimized for creating paginated
reports from published Power Bl datasets and deploying
these reports to Power Bl. This is conceptually like how you
can use the Power Bl Analyze in Excel feature to create Excel
reports from published datasets.

Understanding usage scenarios

In a nutshell, consider using Report Builder when paginated
reports might be preferable compared to Power Bl reports.
Here are the main reasons:

* More demanding reporting requirements - Power Bl reports
are very easy to create but they are also somewhat
simplistic. Report Builder supports more sophisticated
report layouts, such as nesting report items (a chart
repeated for each row in a table).

* Better control over the report layout - As | mentioned,
paginated reports are designed to pixel-perfect. Every
organization requires a list of standard reports that don't
require too much interactivity and are designed to be
printed or exported.

* Extensibility - Almost every aspect of paginated reports
can be customized or extended, including plugging in
custom data sources, subscription delivery channels,
export formats, and even implementing custom security.

NOTE I've been privileged to contribute to and witness the evolution and success
of Microsoft SQL Server Reporting Services since its debut in 2004. SSRS is
Microsoft's most mature and extensible reporting platform. Although written more
than a decade ago, my book "Applied Microsoft SQL Server 2008 Reporting
Services" (768 pages) should help you appreciate the breath of its features.
Understanding Power Bl limitations

As of the time of writing, Power Bl paginated reports are a
preview feature that requires Power Bl Premium. Many of the
SSRS features are not available but Microsoft is working hard
to migrate them to Power BIl. For example, Power Bl supports
only a subset of the SSRS data sources, and it doesn't
support shared data sources and datasets, subreports and
drillthrough reports, as well as management features, such
as report caching. For more information about existing
limitations, read the article "What are paginated reports in
Power Bl Premium?" at https://docs.microsoft.com/power-
bi/paginated-reports-report-builder-power-bi.

Query Design{ Design Mode] a X
_ : A Multivalue
P Editas Text & Import... | pax v | & 6: @]X Y EJ.@ Parameters

) Model Dimension Hierarchy Operator Filter Expression Parameters
.2 Metadata DimSalesTerrito... % SalesTerritory.. Equal {All'}
% caarch Made <Select dimens...
Measure Group:
<All> ¥ | EnglishProductCa... EnglishProductSu... CalendarYear EnglishMonthName NetProfit (A
() Model A - Road Bikes 2011 January -436.0885
H g Measures Components Road Frames 2011 January 574.5048
& KPIs Accessories Helmets 2011 January 1452.2486
|0 DimCustomer Components Road Frames 2011 May 1574.528
i [DimDate Bikes Road Bikes 2011 May 4788.7363
¥ [_{ DimEmployee .
S Clothing Jerseys 2011 May -1395.8192
+ L’. DimProduct
Bikes Road Bikes 2011 August -3894.6566
1 |0 DimReseller
L DlmSaIesTerrltory Accessories Helmets 2011 August 1762.2792
T " i European Countries Components Road Frames 2011 October 951.0072
+ :: SalesTerritoryCountry Bikes Road Bikes 2011 October -2804.3426
+ ,; SalesTerritoryGroup Bikes Road Bikes 2012 January -97784.524
+ :: SalesTerritoryKey v ARAAR AR te Daad Eramas 117 |aniiani 20707 20ne ¥
xs : - < >
Help 0K Cancel

Figure 24.1 The Analysis Services Query Designer can auto-
generate DAX and MDX queries.

24.1.2 Understanding the Analysis Services
Query Designer

Like Power BI, Report Builder has the concept of datasets.
However, a Report Builder dataset always connects directly
to the data source (the data is not imported). Report Builder
requires you to specify a query for each dataset. It includes
graphical query designers to help you auto-generate queries
for some Microsoft data sources, such as SQL Server and
Analysis Services. The Analysis Services Query Designer (see
Figure 24.1) deserves more attention because it can
generate DAX queries.

NOTE Besides Report Builder, you'll find the Analysis Services Query Designer in
SQL Server Management Studio (SSMS), when you browse a Tabular model or a
Power Bl model. One notable difference is that SSMS doesn't support
parameterizing the query (only Power Bl Report Builder supports it).

Understanding connectivity options

You can connect Report Builder to any of the Analysis
Services data sources (published reports require a Power Bl
gateway to connect to on-prem data sources):

* Published Power Bl datasets - Currently, this option
requires the dataset to be hosted in a premium
workspace. Use the XMLA endpoint syntax to connect to
the workspace:

powerbi://api.powerbi.com/v1.0/myorg/[your workspace name]

* Analysis Services Multidimensional or Tabular models -
This includes SQL Server Analysis Services
(Multidimensional and Tabular) and Azure Analysis
Services Tabular.

* Published Power Pivot models - You can also connect to
Power Pivot models deployed to SharePoint Server.

Auto-generating queries

A unique feature of this designer is that it can autogenerate
MDX and DAX queries (recall that Analysis Services supports
these two query interfaces). You can toggle the Syntax Type
drop-down to select a query type. Then, just drag fields from
the left Metadata pane into the right query pane. Click the
Exclamation button to run the query and see the results. To
see the query text, toggle the Design Mode button.
Remember that you can customize and optimize the query in
Text Mode, such as to use variables, but you can't switch
back to the graphical interface (Design Mode) without losing
your changes.

You can also parameterize your queries. To do so, drag one
or more fields to the Filter pane (above the query pane),
specify an operator, and a default value. To promote the filter
to a parameter, don't forget to check the Parameters
checkbox. The query designer will auto-generate a hidden

dataset for each parameter, and it will make the necessary

changes to the main dataset.

Sales Summary

2010

Category Subcategory Total Total
B Accessories Bike Racks

Bottles and Cages

Cleaners

Helmets 563

Hydration Packs

Locks

Pumps

Tires and Tubes

Total 563
Bikes Total 12,864
Clothing Total (108)
Components Total 663
Total 13,982

2011

1113

295
255

11,664
(90,049)

7,744
121,752

51,112

Total

2012
Total

3,164
115
232
17,242
1,128
2,881
2416
29
27,208
129,235
103,915
371,011

631,370

2013 Total
30,524 33,688
1,233 1,349
1,769 2,002
20,563 49,482
9,905 11,034
3,176
2,672
145 174
64,140 103,576
(448,300) (396,250)
38,983 150,535
191,870 685,297
(153,306) 543,158

Figure 24.2 The Sales Summary paginated report connects

to a Power Bl model.

24.2 Creating a Paginated Report

Next, you'll practice using the Power Bl Report Builder to
create a paginated report that uses a DAX query to retrieve
the data. The Sales Summary crosstab report (see Figure
24.2) sources data from a Power Bl model. | included the
report definition in the \Source\Part5 folder.

24.2.1 Getting Started with Power Bl Report
Builder

Let's start by installing the Power Bl Report Builder and using
one of its wizards to quickly create the report layout. As a
prerequisite, if you want to connect to a published Power BI
model, deploy the Adventure Works model to a premium
workspace (in the Power Bl portal, premium workspaces
have a diamond icon next to their names). If you don't have
access to a premium workspace, you can follow along by
connecting to your local Power Bl Desktop model.

Practice
Follow these steps to install Power Bl Report Builder:

1.0pen your web browser and navigate to powerbi.com. Log
in with your credentials.

2.In the Power Bl portal, click the Download menu in the top
right corner and then click "Paginated Report Builder". This
navigates you to the Microsoft Power Bl Report Builder
download page. Download and install the setup program.

3.0pen Power Bl Report Builder on the desktop. In the
Getting Started splash screen, choose "Table or Matrix
Wizard".

a.In the "Choose the dataset" step, select the "Create a
dataset" option to set up a new dataset.

5. In the "Choose a connection to a data source" step, click
New. In the "Data Source Properties" window, rename the
data source from DataSourcel to AdventureWorks. Expand
the "Select connection type" dropdown and choose

"Microsoft SQL Server Analysis Services". Currently, you
must use this data source to connect to published models
although Microsoft has indicated that they plan to introduce
a data source for published datasets). Click the Build button.

6.In the Connection Properties window, enter one of the
following in the "Server name" field:

* The XMLA endpoint address - In case you connect to a
published Power Bl model, enter the XMLA endpoint
address for the premium workspace. Power Bl Report
Builder will ask you to provide your credentials to log in to
Power BI.

* The local Tabular instance address behind the Power Bl
Desktop model - Once you open the Adventure Works
model in Power Bl Desktop, use DAX Studio to get this
address, which will be in the format /ocalhost:port. This
option won't ask you to authenticate because it will use
your Windows identity. You can use this connectivity option
to test Power Bl Report Builder if you don't have access to
Power Bl Premium, but remember that it will work only on
your desktop (a published report won't be able to
connect).

7.In the Connection Properties window, expand the "Connect
to a database" dropdown and select your Power Bl Desktop
file. If you connect to the local Tabular instance, you'll see
only one item with a system-generated Global Unique
Identifiers (guid) name.

8.Click "Test Connection" to test connectivity. If all is well,
click OK to return to the "Data Source Properties" window.
The "Connection string" field should now be populated. Click
OK. Then, click Next to advance to the wizard's "Design a
query" step.

Analysis

Currently, Report Builder comes in two flavors: SQL Server
Reporting Services and Power Bl. The former is designed to
work with an SSRS report server and supports all SSRS
features. The latter is designed to integrate with Power BI

and support only paginated report features that are
compatible with Power Bl. Both versions produce paginated
reports described in a documented Report Definition
Language (RDL) specification.

Given the subject of this book, the most interesting
connectivity options for the reader would be connecting to
Analysis Services Tabular and Power Bl models, and then
publishing the report to Power BI. Currently, paginated
reports are a Power Bl Premium feature.

24.2.2 Working with DAX Queries

The "Design a query" step is where you design the DAX
query using the Analysis Services Query Designer. Let's
quickly create and examine the generated DAX query.

Practice

Instead of creating the query from scratch, you'll auto-
generate it by dragging and dropping fields. Notice that the
query designer supports only explicit measures. Unlike Power
Bl, you can't create implicit measures.

1.In the Metadata pane, expand the Measures folder and
then expand the FactResellerSales folder. Drag the "Net Profit
(m)" measure and drop it in the query pane. Or, right-click
the measure and then click "Add to Query". The order you
add the query fields in is insignificant.

2.Expand the DimProduct table and add
EnglishProductCategoryName and
EnglishProductSubcategoryName to the query.

3.Expand the DimDate table and add CalendarYear and
EnglishMonthName fields to the query.

4.To parameterize the report by country, expand
DimSalesTerritory and drag SalesTerritoryCountry to the filter
pane above the query pane. Expand the Operator field and
choose the "Equal" operator. Expand the Filter Expression
field and check the All item to default the parameter to all
countries. To promote the filter to a report parameter, check
the Parameters checkbox.

5.Click the Execute Query (the exclamation point button) to
run the query. Compare your results with Figure 24.1.

6.Toggle the Design Mode button to switch to text mode.
Notice that the tool has generated the following DAX query:

DEFINE

VAR DimSalesTerritorySalesTerritoryCountryl =

IF (

PATHLENGTH (@DimSalesTerritorySalesTerritoryCountry) = 1,

IF (

@DimSalesTerritorySalesTerritoryCountry <> "",
@DimSalesTerritorySalesTerritoryCountry,

BLANK ()),

IF (

PATHITEM (@DimSalesTerritorySalesTerritoryCountry, 2) <> "",
PATHITEM (@DimSalesTerritorySalesTerritoryCountry, 2),

BLANK ())

)

VAR DimSalesTerritorySalesTerritoryCountrylALL =

PATHLENGTH (@DimSalesTerritorySalesTerritoryCountry) > 1

&& PATHITEM (@DimSalesTerritorySalesTerritoryCountry, 1,1) <1
EVALUATE

SUMMARIZECOLUMNS (
'‘DimProduct'[EnglishProductCategoryName],
‘DimProduct'[EnglishProductSubcategoryName],
‘DimDate'[CalendarYear],

‘DimDate'[EnglishMonthName],

FILTER (

VALUES ('DimSalesTerritory'[SalesTerritoryCountry]),

((DimSalesTerritorySalesTerritoryCountrylALL

|| '‘DimSalesTerritory'[SalesTerritoryCountry] =
DimSalesTerritorySalesTerritoryCountryl))

),
"NetProfit (m)", [NetProfit (m)])

7.Click Next to advance to the next step. In the Arrange
Fields step, drag the EnglishProductCategoryName and
EnglishProductSubcategoryName fields to the "Row group"
area, CalendarYear and EnglishMonthName fields to the
"Column groups" area, and NetProfit m field to the Values
area.

8.Accept the defaults in the next steps and then click Finish.
Power Bl Report Builder generates the report definition and
opens the report in design mode.

9.Click the Run button (or press F5) to run and test the
report. It should look like Figure 24.2, although |I've made a
few layout tweaks to polish the report appearance a bit.

Analysis

By default, the query designer creates multivalue
parameters, but the query syntax doesn't support them. For
example, if you select multiple countries and run the report,
you'll get a "Type mismatch" error. To avoid this, you must
toggle the Multi-value Parameters button in the Analysis
Services Query Designer in DAX mode, which rewrites the
query completely and uses an undocumented
RSCustomDaxFilter function.

TIP You don't have to stick to the auto-generated DAX queries and their
limitations. My blog "SSRS Multivalue Parameters in DAX"
(https://prologika.com/ssrs-multivalue-parameters-in-dax/) shows you how to
modify the query to handle multivalue parameters and simplify its syntax.
Unfortunately, once you take the custom query path, you can't use the graphical
query designer and its drag-and-drop feature anymore.

The query starts by declaring two variables for detecting the
parameter selection. The first variable,
DimSalesTerritorySalesTerritoryCountryl, detects the
selected country. The second variable is to detect if all
countries or the "All" value are selected. To understand these
variables better, exit the query designer, right-click the
Datasets node in the Report Data pane, and then click "Show
Hidden Datasets". You'll see another dataset that the query
designer has generated for the parameter's available values.
This dataset uses this DAX query:

EVALUATE

SELECTCOLUMNS (

ADDCOLUMNS (

SUMMARIZECOLUMNS (

ROLLUPADDISSUBTOTAL ('DimSalesTerritory'[SalesTerritoryCountry], "h0")
),
"ParameterLevel”, IF ([h0], 0, 1)
),
"ParameterCaption”, SWITCH (

[ParameterLevel],

1, " & 'DimSalesTerritory'[SalesTerritoryCountry],
IIA”II

),

https://prologika.com/ssrs-multivalue-parameters-in-dax/

"ParameterValue", [ParameterLevel] & "|" &
'DimSalesTerritory'[SalesTerritoryCountry],
"ParameterLevel”, [ParameterLevel],
"'DimSalesTerritory'[SalesTerritoryCountry]",
'DimSalesTerritory'[SalesTerritoryCountry])

Figure 24.3 shows you the results from this query.

SalesTerritoryCountry ParameterCaption ParameterValue ParameterlLevel
(null) Al 0l 0
Australia Australia 1|Australia 1
Canada Canada 1|Canada 1
France France 1|France 1
Germany Germany 1|Germany 1
NA NA 1INA 1
United Kingdom United Kingdom 1|United Kingd... 1
Linited States United States 1lUnited States 1

Figure 24.3 This dataset is used for the parameter's
available values.

The query constructs a ParameterValue column. Does its
syntax look familiar? It complies with the output of the DAX
PATH function. And the ParameterLevel column returns the
value level (indentation) with the All value being at level O
and other values at level 1 (a hierarchy may have more
levels).

Going back to the main query,
@DimSalesTerritorySalesTerritoryCountry represents the
parameter value that the report passes to the query. You can
see this placeholder defined on the dataset properties page
(Parameters tab). The variables use the PATHLENGTH and
PATHITEM functions to detect the parameter level and the
actual value. Finally, like Power Bl-generated queries,
SUMMARIZECOLUMNS is used to group the query and filter
the results for the selected parameter value.

24.3 Summary

Some reporting tools, such as Power Bl Report Builder, can't
auto-generate DAX when you interact with the report and
require you to specify dataset queries. Power Bl Report
Builder includes an Analysis Services Query Designer that
can generate DAX queries at design time. You can also use
the knowledge from this book to customize the generated
DAX queries or replace them with your own queries.

PART 6

Advanced DAX

Now that you know how to create the three DAX constructs
(calculated columns, measures, and queries), you're ready to
tackle more advanced scenarios with DAX. This part of the
book starts by showing you how DAX can help you work with
different types of joins, including recursive (parent-child),
many-to-many, inner, outer, and other joins.
If you need to restrict certain users to a subset of the data,
you need data security. I'll show you how to implement row-
level security (RLS) with DAX. You'll also learn how to handle
more complicated security policies, such as by externalizing
the secured entities in a separate table.

You'll find the completed exercises and reports for this part
of the book in the Adventure Works and Bank models that
are included in the \Source\Part6 folder.

Lesson 25
Recursive Relationships

So far, you've created DAX calculations that work with
regular relationships where a dimension (lookup) table joins
to the fact table directly. In this lesson, you'll learn how to
work with recursive relationships, which DAX doesn't support
natively, but it has functions that are specifically designed
for this relationship type. You'll find the DAX formulas in
\Source\Part6\Recursive Relationships.dax.

25.1 Understanding Recursive
Relationships

A recursive (also known as parent-child) relationship
represent is a hierarchical relationship formed between two
entities with an arbitrary number of levels. Common
examples of parent-child relationships include an employee
hierarchy, where a manager has subordinates who in turn
have subordinates, and an organizational hierarchy, where a
company has divisions, offices, and branches.

25.1.1 Modeling Recursive Hierarchies

In a reqgular hierarchy, each level has a separate column and
usually the number of levels is small. A recursive hierarchy
on the other hand is a hierarchy formed by two columns that
define a recursive relationship among the hierarchy
members.

EmployeeKey |+T| ParentEmployeeKey |~ | FirstName |~ | LastName |~

18 Guy Gilbert
, 7 | Kevin Brown
' Roberto Tamburello
Rob Walters
' Rob Walters
l 267 Thierry D'Hers
, 112 David Bradley

e (=
(%] [] ~J w W £

=

David Bradley

oy Ca ~J [=)] wn £y [¥%] (3% b

23 Jolynn Dobney

[y
L]

189 Ruth Ellerbrock

11 36 “-irkson
Figure 25.1 The ParentEmployeeKey column contains the
identifier for the employee's manager.

Modeling parent-child columns

The EmployeeKey and ParentEmployeeKey columns in the
DimEmployee table have a parent-child relationship, as
shown in Figure 25.1. Specifically, the ParentEmployeeKey
column points to the EmployeeKey column (the primary key

of the DimEmployee table) to identify the employee's
manager. For example, Kevin Brown (EmployeeKey = 2) has
David Bradley (EmployeeKey=7) as a manager, who in turn
reports to Ken Sanchez (EmpoyeeKey=112). (Ken is not
shown in the screenshot.) Ken Sanchez's ParentEmployeeKey
is blank, which means that he's the top manager.

Recursive hierarchies might have an arbitrary number of
levels. Such hierarchies are called unbalanced hierarchies.
For example, Kevin is a marketing manager and his branch in
the organizational chart may consist of only two levels.
However, James Hamilton, who's a vice president of
production and also reports to Ken, might have a deeper
hierarchy.

When to use recursive hierarchies

A recursive hierarchy is typically used to model deep
relationships, such as a manager-subordinate relationship,
that may require many levels and creating a column for each
level might be limiting and impractical. To model a recursive
hierarchy as a reqgular hierarchy you need to estimate the
maximum number of levels. Then, you'd probably increase
that number to accommodate the case where the hierarchy
levels increase in the future. Recursive hierarchies solve this
issue elegantly by requiring only two columns.

All popular relational database management systems
(RDBMS) support parent-child relationships. They may also
enforce constraints to prevent deleting a parent, which may
lead to orphan members.

25.1.2 Handling Recursive Relationships in DAX

Unfortunately, DAX doesn't natively support recursive
relationships. It doesn't have functions to traverse
hierarchies either, such as to find the ancestor or
descendants of a current member. However, it has functions
to "flatten" the levels in a recursive hierarchy to columns and
to return the path to each member (see Table 25.1)

Table 25.1 DAX has specific functions for recursive hierarchies.

Function Syntax Description
PATH PATH (<PrimaryColumn>, Returns the entire path to the current
<ParentColumn>) member as a delimited list starting from
the top
PATHLENGTH PATHLENGTH (<Path>) Returns the number of levels before and
including the current member
PATHITEM PATHITEM (<Path>, <Position> [, Returns the item at a specified position

<Type>]) starting from the left of the delimited list
produced by the PATH function

Same as PATHITEM but going in reverse
(from lower to higher levels)

PATHITEMREVERSE PATHITEMREVERSE (<Path>,
<Position> [, <Type>])

PATHCONTAINS PATHCONTAINS (<Path>, <ltem>) Returns TRUE if the specified item exists

in the delimited list produced by the PATH
function

All these functions are designed to work in the row context,
so you'll use them to add calculated columns to the table
containing the recursive hierarchy.

Functions for hierarchy paths

The mother of all DAX recursive functions is PATH. This
function produces the hierarchy path as a delimited string
from the top member to the current member. For example, a
path of "112|7|2" means that the top memberis 112, the
immediate descendant is 7, and 2 is the identifier of the
current member.

You can use PATHLENGTH to find how many levels a given
member has. For example, PATHLENGHT("112|7|2") returns
3. This function could be useful to find the number of
ancestors by subtracting one from the return value.

Functions for locating members
You can locate a member by using the PATHITEM item
function and specifying a starting position and offset. For
example, PATHITEM ("112]|7|2", 1, 0) returns 112 because
this member is at the top. The third argument (Type)
specifies the data type of the output and it takes one of
these two values: 0 (returns the member identifier as a
number) and 1 (returns the identifier as text). And
PATHITEMREVERSE works the same way but in the opposite
direction.

PATHCONTAINS checks if a member identifier is in the
hierarchy path. You'll use this function later in this part of the
book to implement a row-level security filter that restricts

the user to see only his sales and the sales of his
subordinates.

25.2 Working with Recursive
Relationships

Next, you'll practice the DAX functions for handling recursive
relationships. You'll use the DimEmployee table in the
Adventure Works model for this practice. You'll start by
creating a hierarchy to drill down the organizational chart.
Then, I'll show you how to hide members that don't have
data.

25.2.1 Creating a Recursive Hierarchy

Before you can create an organizational hierarchy to analyze
sales by the manager-subordinate relationship, you must first
flatten the recursive relationship into levels.

Practice
As a first step, use the PATH function to return the hierarchy

path for each employee.

1.If you don't have a FullName calculated column in the
DimEmployee table, add a calculated column FullName to
this table with the following formula:

FullName = [FirstName] & " " & [LastName]

2.Add a Path calculated column to the Employee table with
the following formula:

Path = PATH([EmployeeKey], [ParentEmployeeKey])

NOTE You may get the following error with your real-life models when you use
the PATH function: "The columns specified in the PATH function must be from the
same table, have the same data type, and that type must be Integer or Text". The
issue could be that the parent key column is of a Text data type. This might be
caused by a literal text value "NULL" in the ParentEmployeeKey, while it should
be a blank (null) value. To fix this, open the Power Query Editor (right-click the
table and click Query Editor), right-click the text column, and then click Replace
Values. In the Replace Value dialog, replace NULL with blank. Then, in the Power
Query Editor (Home ribbon tab), change the column type to Whole Number and
click the "Close & Apply" button.

The formula uses the PATH function, which returns a
delimited list of IDs (using a vertical pipe as the delimiter)

starting with the top (root) of a parent-child hierarchy and
ending with the current employee identifier.

The next step is to flatten the parent-child hierarchy by
adding a column for each level. This means that you need to
know beforehand the maximum number of levels that the
employee hierarchy might have. To be on the safe side, add
one or two more levels to accommodate future growth.

3.Add a Levell calculated column that has the following
formula:

Levell = LOOKUPVALUE([FullName], [EmployeeKey], PATHITEM ([Path],1,1))

This formula uses the PATHITEM function to parse the Path
calculated column and return the first member identifier as a
number (notice that the third argument is 1), which is 112.
Then, it uses the LOOKUPVALUE function to return the full
name of the corresponding employee, which in this case is
Ken Sanchez.

a.Add five more calculated columns for Levels 2-6 that use
similar formulas to flatten the hierarchy all the way down to
the lowest level. Compare your results with Figure 25.2.

I 1 Levell = LOOKUPVALUE([FullName], [EmployeeKey], PATHITEM([Path],1,1))

- Path ~ |SLevell " ~ | Level2z |~ Level3 = Leveld - Level5 *| Level6 |~
112]23|18]1 Ken Sanchez Peter Krebs Jo Brown Guy Gilbert 0
112|7]2 Ken Sanchez David Bradley Kevin Brown

lo 112]14|3 Ken Sanchez Terri Duffy Roberto Tamburello
112|14|3|4 Ken Sanchez Terri Duffy Roberto Tamburello Rob Walters
112]14|3|5 Ken Sanchez Terri Duffy Roberto Tamburello Rob Walters

112|14|3|267|6 KenSanchez Terri Duffy Roberto Tamburello Ovidiu Cracium Thierry D'Hers

112|7 Ken Sénchez David Bradley

1128 Ken Sanchez David Bradley

112|23|9 Ken Sanchez Peter Krebs Jolynn Dobney

112]23|189|10 Ken Sénchez Peter Krebs Andrew Hill Ruth Ellerbrock

112|14|3|11 Ken Sdnchez Terri Duffy Roberto Tamburello Gail Erickson
112]23|189|12 Ken Sénchez Peter Krebs Andrew Hill Barry Johnson

Ken Séanchez Terrinm ™ Tamburello Jossef Goldk-

Figure 25.2 Use the PATHITEM function to flatten the
parent-child hierarchy.

5.Hide the Path column in the Employee table as it's not
useful for analysis.

6.Create an Employees hierarchy consisting of six levels
based on the six columns you just created. To create the
hierarchy, right-click the DimEmployee[Levell] column in the
Fields pane, and then click "New Hierarchy". Rename the
new hierarchy to Employees. Then, right-click the remaining
Level2 to Level6 columns one by one and then click "Add to
hierarchy -> Employees".

Output
Let's create a quick report to test the results.

1.Add a Matrix visualization to analyze sales by the
Employees hierarchy. To do so, add the Employees hierarchy
to the Row area and ResellerSales[SalesAmount] to the
Values area.

2.Right-click Ken Sanchez and click Expand -> All. Compare
your results with Figure 25.3.

Analysis
Going back to the Data View tab, notice that most of the
cells in the Level 5 and Level 6 columns are empty, and
that's okay because only a few employees have more than
four indirect managers. However, what doesn't look right are
the empty cells in the Matrix visual which are the byproduct
of the missing levels.

For example, Joe Pak reports to Amy Alberts and he is at
Level 4 in the organizational hierarchy. His levels 5 and 6 are
empty and the report shows them as empty cells.

Level SalesAmount

Ken Sanchez _ $80,450,597

Brian Welcker | $80,450,597
Amy Alberts _ $15,535,946
$732,078

$732,078

| $732078

Jae Pak | $8503,339

| $8,503,339

_ $8,503,339

Rachel Valdez | $1,790,640

| $1,790,640
| $1,790,640
Daniit UVarlraw Chudalasil | €4 ENnaG |80

Figure 25.3 The empty members correspond to blank levels
in the Employees hierarchy.

25.2.2 Refining a Recursive Hierarchy

Unfortunately, Power Bl doesn't make it easy to hide these
blank members. The backend Tabular server has a
HideMembers property, but it's not yet exposed in Power Bl
Desktop. Of course, this presents another opportunity to
hone in your DAX skills.

Practice
Let's add a calculated column and a new measure to handle
the blank members.

1.Add a LevelNumber calculated column to the DimEmployee
table with the following formula:

LevelNumber = PATHLENGTH ([Path])

2.Add a SalesAmount (h) measure to DimEmployee table with
the following formula:

SalesAmount (h) =
VAR MemberLevel = ISFILTERED(DimEmployee[Levell]) +
ISFILTERED(DimEmployee[Level2]) +
ISFILTERED(DimEmployee[Level3]) + ISFILTERED(DimEmployee[Level4]) +
ISFILTERED(DimEmployee[Level5]) + ISFILTERED(DimEmployee[Level6])
VAR TotalLevels = MAX (DimEmployee[LevelNumber])
RETURN
if(MemberLevel > TotalLevels, BLANK(), SUM(FactResellerSales[SalesAmount]))

Output

Replace the ResellerSales[SalesAmount] measure in the
Matrix report with the DimEmployee[SalesAmount (h)]
measure. Now the report doesn't show empty cells. Compare
your results with Figure 25.4.

Analysis

The SalesAmount (h) measure "fixes" the report and
removes the blank members. Let's analyze how it works. The
LevelNumber calculated column uses the PATHLENGTH
function to return the number of levels in the hierarchy. For
example, LevelNumber returns 4 for Jae Pack because Jae's
path is "112|277]290|291" (has four segments).

The MemberLevel variable in the SalesAmount (h)
measure calculates the current level in the report. When
used in arithmetic calculations, TRUE is treated as 1 so the
variable adds 1 to calculate the level for each member in the
report, including empty members. The TotalLevels variable
returns the LevelNumber value associated with the
employee. Because it's a measure, it must use an aggregate
function. There will be only one row in the filter scope of
each cell and MAX (DimEmployee[LevelNumber]) returns
that value (you can also use the MIN function).

Levell SalesAmount (h)

Ken Sanchez | $80,450,597
Brian Welcker | $80,450,597
Amy Alberts . $15,535,946
Jae Pak : $8,503,339
Rachel Valdez $1,790,640
Ranjit Varkey Chudukatil | $4,509,889
Stephen Jiang . $63,320,315
David Campbell : $3,729,945
Garrett Vargas . $3,609,447
Jillian Carson | $10,065,804

PR JEpEC, B ¢C O9E Ad0

Figure 25.4 The SalesAmount (h) measure removes the
blank members from the report.

The measure then checks if the current level is greater than
the total levels. This condition will return TRUE only for blank
members. If that's the case, the measure returns an empty
(blank) value. Because by default Power Bl visuals remove

blank values, the net effect is that the blank members are
excluded from the report.

25.3 Summary

Recursive relationships are typically used to model deep
unbalanced hierarchies. DAX doesn't support them natively
and it doesn't have functions for navigating hierarchies.
However, DAX has functions to flatten the recursive
relationship into columns for each level. Currently,
preventing blank members from showing up in reports
requires changing the measures formulas.

Lesson 26

Many-to-Many Relationships

Another advanced relationship type that you might
encounter is a many-to-many relationship. This lesson
teaches you how to model many-to-many relationships
declaratively and programmatically. You'll find the DAX
formulas in \Source\Part6\ Many-to-Many Relationships.dax.

and you'll use the \Source\Part6\Bank.pbix model for this
practice.

26.1 Understanding Many-to-Many
Relationships

A many-to-many relationship models a many-to-many
cardinality between two tables. This occurs when a row in
the dimension table relates to many rows in the fact table,
and vice versa. Common real-life examples of many-to-many
relationships are joint bank accounts (one customer can
have multiple accounts and a joint account has multiple
customers) and student course enrollment (a student can
enroll in multiple courses and a course has multiple
students).

26.1.1 Modeling Many-to-Many Relationships

Usually, a dimension table joins a fact table directly because
the cardinality between the two tables is one-to-many. Many-
to-many relationships are often tricky to represent and may
require an intermediate table to break the "many-to-many"
relationship into two "one-to-many" relationships.

Understanding bridge tables

The Bank.pbix file demonstrates a simplified version of a
popular many-to-many scenario involving joint bank
accounts. Open it in Power Bl Desktop and select the Model
View tab to see the table diagram (see Figure 26.1).

The Customer dimension table stores the bank's
customers. The Account dimension table stores the bank
accounts. The Balances fact table records the account
balances every month and it's joined to the Date table. A
customer might have multiple bank accounts, and a single
account might be owned by two or more customers.

To resolve the Customer-Account many-to-many
relationship, the model introduces an intermediate
CustomerAccount table. This table is also referred to as a
bridge table. In its simplest version, it may have only two
columns: Customer and AccountNumber. Each row

represents an account ownership, as shown in Table 26.1
(notice that the Al joint account is repeated).

Table 26.1 The CustomerAccount bridge table stores the many-to-many
combinations.

Customer AccountNumber
Teo Al
Maya Al
Teo A2

For example, Teo owns two accounts (Al and A2) and
account Al is joined by Teo and Maya. So, this table will have
duplicated customers (if the customer owns multiple
accounts) and duplicated account numbers in the case of
joint accounts.

- Customer

I1 Account = Date . ‘
F Date

1 Quarter

F Customer Fl AccountNo

[JointAccount

' CustomerAccount

3 AccountNo

f AccountNo
1 Balance
[Date

i ClosingBalance

F3 Customer

Figure 26.1 The CustomerAccount bridge table resolves the
many-to-many relationship.

When to use bridge tables
Large bridge tables (over one million rows) could negatively
impact the performance of your reports. Don't model every

many-to-many scenario with bridge tables. A bridge table is
required to represent the many-to-many relationship
between a dimension table and a fact table. You might be
able to avoid it with a many-to-many relationship between
two dimension tables.

For example, consider Product and Promotion dimensions.
A product could be on multiple promotions and a promotion
can span multiple products. So, this is a many-to-many
relationship. But you can resolve this relationship in the sales
fact table by simply joining it to the Product and Promotion
dimensions with regular many-to-one relationships. When a
sales transaction is posted, the row records the associated
product and promotion. In this case, there is no need for a
bridge table.

But what if a sales transaction can be associated with
multiple promotions? Now you have a many-to-many
relationship between the Promotion dimension table and the
Sales fact table. This requires a bridge table. In fact, the
AdventureWorksDW database models the same scenario with
the FactinternetSalesReason bridge table to represent the
many-to-many relationship between DimPromotion and
FactinternetSales.

26.1.2 Handling Many-to-Many Relationships

By default, a many-to-many relationship will produce wrong
report results, as you'll see when you go through the practice
steps. In general, there are two ways to handle many-to-
many relationships with bridge tables in Power BIl. The first
requires reconfiguring the relationship between the fact table
and affected dimension table, while the other requires DAX
formulas.

Using bidirectional filtering

If your schema allows it, you should reconfigure the
relationship from unidirectional to bidirectional because
that's the easiest way to handle many-to-many relationships.
How do you know which relationship to reconfigure? Going
back to Figure 26.1, let's trace the path from the

DimCustomer dimension to the Balances fact table.
Specifically, you're examining the direction of the
relationship arrow.

The Customer -> CustomerAccount relationship has an
arrow pointing to CustomerAccount. This means when the
query involves any field from the Customer table, the filter
context will propagate to CustomerAccount, such as to filter
the accounts that belong to a given customer. This is the
behavior you want, so you don't need to modify this
relationship.

The next relationship is Account <- CustomerAccounts.
Now the relationship path reverses the direction. This means
that the filter won't propagate from CustomerAccounts to
Customer. For example, a balance report by customer will
produce wrong results because the filtered accounts in the
CustomerAccounts table from the first relationship won't
filter the accounts in the Account table. This is the
relationship that deserves special attention.

TIP Don't turn on bidirectional filtering on every relationship to "fix" the report
because this may introduce redundant paths with more complicated schemas
that Power Bl will disallow. Instead, trace the relationship path and turn on
bidirectional filtering on the relationship that reverses the path.

To reconfigure the relationship filter direction, open the
relationship properties and change the "Cross filter direction"
property to Both.

Using DAX

Sometimes, you may not have an active relationship or
Power Bl might reject a bidirectional relationship if it detects
redundant or ambiguous paths. In this case, you can force
the measures to be evaluated over the bridge table, using
this syntax:

Measure = CALCULATE (<expression>, <bridge_table>)

Or, this syntax:

Measure = CALCULATE (<expression>, SUMMARIZE(<bridge _table>,
<column_name>))

The second formula might give you a better performance.
Translated to the Bank model, the second formula will look

like this:
CALCULATE (<expression>, SUMMARIZE(CustomerAccount, Account[AccountNo]))

This formula filters the Account[AccountNo] values to those
that exist in the CustomerAccount table by using the
SUMMARIZE function. The net effect is the same as using a
bidirectional relationship.

DAX also has a CROSSFILTER function to programmatically
turn on bidirectional filtering. This function has the following
syntax:

CROSSFILTER(<columnl>, <column2>, <direction>)

Column1 typically represents the column on the many side of
the relationship, which in our case is
CustomerFilter[AccountNo], while Column2 represents the
column on the one side of the relationship
(Account[AccountNo). But don't worry if you switch the
columns as the function will internally swap them for you.
Finally, the direction argument can have one of three values:

* One - the dimension table filters the fact table (default).
* Both - configures the relationship as bidirectional
* None - no cross-filtering occurs in this relationship

26.2 Working with Many-to-Many
Relationships

You're back to the Bank model in Power Bl Desktop. In this
exercise, you'll practice different ways to handle many-to-
many relationships so that reports return expected results.
You'll practice once more handling semi-additive measures
because account balances don't sum across time.

26.2.1 Using Declarative Approach

The Bank model is very simple as it has only five tables. It's
a good candidate for the declarative approach to handle
many-to-many relationships, where you'll reconfigure the
relationships without using DAX.

Practice
Before making any changes, let's see what a balance by
customer report would look like.

1.In the Fields pane, click the Balances[ClosingBalance]
measure to examine its formula in the formula bar.

2.Add a Matrix visual and bind it to Customer[Customer] in
the Rows area, Date[Quarter] and Date[Date] fields in the
Columns area, and the Balances[ClosingBalance] measure in
the Values area.

3.Compare your results with Figure 26.2.

Q1201 Q2 2011

Customer 2011 2/1/2011 3/1/2011 Total 4/1/2011 5/1/2011 Total Total
Alice 700 1000 400 400 200 50 50 50
Bob 700 1000 400 400 200 50 50 50

John 700 1000 400 400 200 50 50 50

Figure 26.2 This report produces wrong balances per
customer.

Analysis

Like the inventory example in the lesson "Semi-additive
measures”, the ClosingBalance measure uses the
LASTNONBLANK function:

ClosingBalance = CALCULATE(SUM(Balances[Balance]),
LASTNONBLANK('Date'[Date], CALCULATE(SUM(Balances[Balancel))))
Consequently, the quarter total shows the last balance
recorded for that quarter and this works as expected.
However, the report shows repeating balances across
customers, which is wrong. If you replace
Customer[Customer] with Account[AccountNo], the report
shows correct results.

Practice

The wrong report results are caused by the many-to-many
relationship between the Customer and Account tables.
Specifically, the CustomerAccounts[AccountNo] ->
Account[AccountNo] reverses its direction when navigating
the Customer -> CustomerAcount -> Account path.

1.In the Model View, double click the
CustomerAccounts[AccountNo] -> Account[AccountNo]
relationship. Alternatively, click the Manage Relationships
button in the ribbon which is available in any view. Then,
select the CustomerAccounts[AccountNo] ->
Account[AccountNo] relationship and then click Edit.

2.In the "Edit relationship" window, expand the "Cross filter
direction" dropdown and select Both. Click OK.

Output
Once you apply the relationship changes, Power Bl refreshes
the report, which now should look like the one in Figure

26.3.

Q12011 Q2 2011

Customer 1/1/2011 2/1/2011 3/1/2011 Total 4/1/2011 5/1/2011 Total Total
Alice 100 200 300 300 300
Bob 600 700 300 300 300
lohn 100 200 200 200

Figure 26.3 This report produces correct results after
reconfiguring the relationship cross-filter direction.

Analysis

The report now shows the correct balances. Because the
CustomerAccounts[AccountNo] -> Account[AccountNo]
relationship is bidirectional (the Model View tab shows a

double arrow), the filter context on the CustomerAccounts
table transfers to the Account table, which in turn applies it
to the Balances table to produce the balance per customer.
Therefore, the filter context propagates from the Customer
table all the way to the Balances table.

26.2.2 Using Programmatic Approach

By default, Power configures all relationships as
unidirectional. Suppose you can't turn on bidirectional
filtering (presumably because it results in ambiguous or
redundant paths). Power Bl will detect such conflicts and
disallow them. However, you can use DAX formulas.

Practice

Handling many-to-many relationships in DAX requires
changing the formulas of all measures that will be analyzed
by any field in the Customer table.

1.Deactivate the CustomerAccounts[AccountNo] ->
Account[AccountNo] relationship (or change its cross-filtering
property back to Single).

2.Add a new measure ClosingBalance (a) with the following
formula:

ClosingBalance (a) = CALCULATE(SUM(Balances[Balance]),
LASTNONBLANK('Date'[Date], CALCULATE(SUM(Balances[Balancel))),
CustomerAccount)

Output

Replace the ClosingBalance measure in the report with
ClosingBalance (a). Notice that the report produces the same
results.

Analysis

The formula passes the CustomerAccount table as a filter
argument to the CALCULATE function. This forces DAX to
evaluate the formula for only accounts that exist in the
CustomerAccount bridge table. You can also use this formula:

ClosingBalance (b) =

CALCULATE (

SUM (Balances[Balance]),

LASTNONBLANK ('Date'[Date], CALCULATE (SUM (Balances[Balance]))),

SUMMARIZE (CustomerAccount, Account[AccountNo]))

Lastly, suppose that you prefer the
CustomerAccounts[AccountNo] -> Account[AccountNo] to be
unidirectional by default, but you want to turn on
bidirectional cross-filtering only for specific measures. You
can accomplish this by using the CROSSFILTER function.

ClosingBalance (c) = CALCULATE(SUM(Balances[Balance]),
LASTNONBLANK('Date'[Date], CALCULATE(SUM(Balances[Balancel))),
CROSSFILTER(CustomerAccount[AccountNo]

, Account[AccountNo]

, Both)

)

This measure uses the CROSSFILTER function to achieve the
same effect as turning on bidirectional filtering in the
relationship properties, but it applies the configuration only
for this measure.

26.3 Summary

You'll encounter many-to-many relationships when a many-
to-many data cardinality exists between a dimension table
and a fact table. When modeling many-to-many
relationships, you should always favor active or inactive
relationships because you'll get better performance and you
don't have to change the measure formulas. When this is not
an option, DAX has functions to achieve the same behavior
programmatically.

Lesson 27

Joins with Existing
Relationships

If you're familiar with SQL, you know that it supports various
types of joins to relate and join tables. This lesson recaps
and expands your knowledge of implementing similar joins in
DAX, including inner and outer joins. | recommend you run
the sample DAX queries in \Source\Part6\Joins with Existing
Relationships.dax either using DAX Studio or SQL Server
Management Studio (SSMS) to examine the effect of the
different join operations. If you need help with DAX queries,
review the first lesion in Part 5.

27.1 Implementing Inner Joins

An inner join retains only the column values that result in a
match. Values that don't match, such as years without sales,
are removed from the result.

Table 27.1 lists the DAX functions you can use to implement
inner or outer joins when active or inactive relationships
exist between the joined tables.

Table 27.1 DAX functions for implementing inner and outer joins with
existing relationships.

Function Join Type Function Join Type

SUMMARIZECOLUMNS INNER SUMMARIZE / VALUES OUTER

GROUPBY INNER RELATED / RELATEDTABLE (no OUTER
grouping

NATURALINNERJOIN (no INNER NATURALLEFTOUTERJOIN (no OUTER

grouping) grouping)

27.1.1 Inner Joins with Grouping

Recall from the lesson "Grouping Data" that the
SUMMARIZECOLUMNS and GROUPBY functions eliminate
column values with no data. Therefore, you can use these
functions to implement inner joins. Run the following query
to return aggregated reseller and Internet sales by calendar
year:

EVALUATE
CALCULATETABLE (
SUMMARIZECOLUMNS (
DimDate[CalendarYear],
"ResellerSales", SUM (FactResellerSales[SalesAmount]),
"InternetSales", SUM (FactinternetSales[SalesAmount])
))

Output

CalendarYear ResellerSales InternetSales
2010 489328.5787 43421.0364
2011 18192802.7143 7075525.9291
2012 28193631.5321 5842485.1952
2013 33574834.1572 16351550.34

Figure 27.1 SUMMARIZECOLUMNS acts as an inner join and
eliminates years with no data.

Analysis

The SUMMARIZECOLUMNS function groups by
DimDate[CalendarYear] and adds an extended column to
aggregate sales from two tables on the many side of the
relationship. Years without sales are eliminated from the
results (although 2014 doesn't have reseller sales, it has
Internet sales and it's retained). The equivalent SQL query
would be:

select d.CalendarYear, SUM (frs.SalesAmount), SUM (fis.SalesAmount)

from DimDate d inner join FactinternetSales fis on fis.OrderDateKey = d.DateKey
inner join FactResellerSales frs on frs.OrderDateKey = d.DateKey

group by d.CalendarYear

SUMMARIZECOLUMNS also works with inactive relationships.
For example, the following query works without using the
USERELATIONSHIP function although the
DimEmployee[SalesTerritoryKey] ->
DimSalesTerritory[SalesTerritoryKey] relationship is inactive.

EVALUATE

SUMMARIZECOLUMNS (
DimEmployee[FullName],
DimSalesTerritory[SalesTerritoryCountry],
"Sales", SUM (FactResellerSales[SalesAmount])

)

Practice

GROUPBY also acts as an inner join but remember that it
requires an extended "X" function for aggregating data in the
extended columns.

EVALUATE

GROUPBY(FactResellerSales,

DimDate[CalendarYear],

"ResellerSales", SUMX(CURRENTGROUP(), FactResellerSales[SalesAmount])

)
Output

CalendarYear ResellerSales
2011 18192802.7143
2012 28193631.5321
2013 33574834.1572

Figure 27.2 GROUPBY also acts as an inner join but only
one table can be aggregated on the many side of the join.

Analysis

Notice that the first argument of GROUPBY is the table on
which the extended column operates. Unlike
SUMMARIZECOLUMNS, GROUPBY is designed to aggregate
data from a single table on the many side of the relationship
by columns from one or more dimension tables on the one
side of the relationship.

27.1.2 Inner Joins Without Grouping

DAX also provides a NATURALINNERJOIN function for joining
tables at the table grain that doesn't requires grouping the
data. You can use this function to join the data first, before
performing other operations on top of the joined data, such
as counting or aggregating the data in measures.

Practice

If you need to join two tables before grouping the results,
you can use the NATURALINNERJOIN function which has the
following syntax: NATURALINNERJOIN (<LeftTable>,
<RightTable>)

EVALUATE

TOPN (

5,

SELECTCOLUMNS (

NATURALINNERJOIN (DimDate, FactResellerSales),
"Date", DimDate[Date],

"SalesAmount", FactResellerSales[SalesAmount]

)
Output

Date SalesAmount

1/29/2011 12:00:00 AM 874.794
1/29/2011 12:00:00 AM 419.4589
1/29/2011 12:00:00 AM 183.9382
1/29/2011 12:00:00 AM 2146.962

Figure 27.3 NATURALINNERJOIN joins two tables with an
inner join.

Analysis

When there is an active relationship, NATURALINNERJOIN
uses the relationship to qualify rows where the column
values in both tables match. To avoid returning all columns
from both tables, the query uses the SELECTCOLUMNS
function to select only two columns. It also uses the TOPN
function to restrict the output to the first five rows. Notice
that the results are not grouped which conceptually is like
how a SQL join without GROUP BY aggregation would work.

27.2 Implementing Outer Joins

An outer join retains all column values in one of the tables
irrespective if there is a match in the other table. The SQL
language distinguishes between left and right outer join
depending on which side of the join retains all values.

27.2.1 Outer Joins with Grouping

You can use the ADDCOLUMNS/SUMMARIZE pattern or the
VALUES function to implement outer joins and group the
data.

Practice

The following query using the SUMMARIZE function to
simulate a left outer join between FactResellerSales and
DimDate and between FactResellerSalea and DimProduct.

EVALUATE

ADDCOLUMNS (

SUMMARIZE (

FactResellerSales,

DimDate[CalendarYear],

DimProduct[EnglishProductCategoryName]

), "ResellerSales", CALCULATE (SUM (FactResellerSales[SalesAmount])))

Output
CalendarYear EnglishProductCategoryName ResellerSales
2010 Clothing 2875.1536
2011 Clothing 136624.1404
2012 Clothing 759490.3014
2013 Clothing 878851.2437
2010 Accessories 1695.666
2011 Accessories 45596.7872

~12 Accessories 145107.4903

Figure 27.4 SUMMARIZE and VALUES retain column values
with no data.

Analysis

Notice that because the query groups sales by year and
product category (two dimensions are involved), the first
argument (base table) passed to the SUMMARIZE function is
the fact table because it's related to both dimensions. The

output represents the aggregated sales, irrespective of if
they have associated years or products (FactResellerSales
doesn't have unrelated rows so no empty column values
show up). Attempting to group on a column that doesn't
have an active relationship to the base table results in the
error "column '‘name’' specified in the 'SUMMARIZE' function
was not found in the input table".

You can use CALCULATE or CALCULATETABLE to navigate
inactive relationships. For example, this query uses
CALCULATETABLE to navigate the FactResellerSales
[ShipDateKey] -> DimDate[DateKey] relationship with the
USERELATIONSHIP function

EVALUATE

CALCULATETABLE (

ADDCOLUMNS (

SUMMARIZE (

FactResellerSales,

DimDate[CalendarYear],
DimProduct[EnglishProductCategoryName]

),
"ResellerSales", CALCULATE (SUM (FactResellerSales[SalesAmount]))

) , USERELATIONSHIP (FactResellerSales[ShipDateKey], DimDate[DateKey]))

27.2.2 Outer Joins without Grouping

Like inner joins, there are DAX functions for looking up or
relating data that don't eliminate values if there is no match.

Practice
You can use the RELATED function to look up values from a
table on the one side of the relationship.

EVALUATE

TOPN (5,

SELECTCOLUMNS (

ADDCOLUMNS (FactResellerSales, "Date", RELATED (DimDate[Date])),
"OrderDate", [Date],

"SalesAmount", [SalesAmount]

)

Analysis

This query looks up the value of the DimDate[Date] and
ADDCOLUMNS adds it to FactResellerSales aliased as "Date".
Then, SELECTCOLUMNS return only two columns: Date

aliased as OrderDate and SalesAmount aliased as
SalesAmount.

Practice

When grouping is not required, you can use
NATURALLEFTJOIN to implement a left join.

EVALUATE

TOPN (5,

SELECTCOLUMNS (

NATURALLEFTOUTERJOIN (DimDate, FactResellerSales),

"Date", DimDate[Date],

"SalesAmount", FactResellerSales[SalesAmount]))

Analysis

NATURALLEFTOUTERJOIN returns all values from
DimDate[Date] irrespective of if they have sales or not.
SELECTCOLUMNS returns only the two specified columns
from the results and TOPN filters the first five rows.

27.3 Summary

Although not as feature rich as SQL, DAX has a
comprehensive list of functions that allow you to simulate
left and outer joins over existing relationships. The function
choice depends on whether you want the results to be
grouped and if you want empty values to be eliminated.

Lesson 28

Virtual Relationships

Sometimes, you may need to relate tables that don't have a
physical relationship. A "virtual" relationship is a runtime join
that doesn't use an existing active or inactive relationship.
This lesson reviews different ways to implement virtual
relationships. You'll also learn how to implement more
involved joins, such as cross joins and unions. As with the
previous lesson, | recommend you run the sample DAX
queries in \Source\Part6\Virtual Relationships.dax either
using DAX Studio or SQL Server Management Studio (SSMS)
to see the effect of the different join operations.

28.1 Implementing Virtual
Relationships

You can use the functions shown in Table 28.1 to implement
simple lookups and virtual joins when physical relationships
don't exist.

Table 28.1 DAX functions for joining tables without relationships.

Function Join Type Function Join Type
LOOKUPVALUE OUTER NATURALINNERJOIN INNER
NATURALLEFTOUTER]JOIN OUTER INTERSECT INNER
TREATAS OUTER CROSSJOIN INNER (with

filter)

28.1.1 Implementing Virtual Outer Joins

Next, you'll practice the LOOKUPVALUE and
NATURALLEFTOUTERJOIN functions to implement simple
lookups and SQL-style outer joins that retain all values from
one of the tables.

Practice

Previously, I've shown you how to use LOOKUPVALUE to
implement calculated columns. You can also apply this
function to measures, such as when the formula uses an
iterator function.

EVALUATE

TOPN (5,

SELECTCOLUMNS (

ADDCOLUMNS (FactResellerSales, "Date",

LOOKUPVALUE (DimDate[Date], DimDate[Date], FactResellerSales[OrderDate])),
"OrderDate", [Date],

"SalesAmount", [SalesAmount]

)

Analysis

Like the similar example in the previous lesson, this query
returns a table with two columns but it uses the
LOOKUPVALUE function to look up the DimDate[Date] column
that matches the OrderDate column. This works because

ADDCOLUMNS is an iterator that passes the row context to
LOOKUPVALUE.

Practice

You can use the NATURALLEFTOUTERJOIN function for outer
virtual relationships, but the current implementation of the
"natural" functions is very restricted. Microsoft hasn't
implemented these functions as value-based joins but as
dictionary-based joins to deliver the fastest performance.
Therefore, the joined columns not only must have the same
name, but also must have the same data lineage so that
they share the same dictionary.

NOTE Think of the column data lineage as an additional metadata attached to
the column, such as references to the original columns in the data model.

The following query uses NATURALLEFTOUTERJOIN to join
DimDate and Customer base tables in order to calculate the
overall customer count by date.

EVALUATE

GROUPBY (

NATURALLEFTOUTERJOIN (
SELECTCOLUMNS (

DimDate,

"Date", DimDate[Date] + O,
"CalendarYear", DimDate[CalendarYear]
)
SELECTCOLUMNS (

CustomerBase,

"Date", CustomerBase[Monthjoined] + O,
"CustomerCount", CustomerBase[CustomerCount]
)

)

[Date],

"CustomerCount", SUMX (CURRENTGROUP (), [CustomerCount]))
Output

Date CustomerCount

12/31/2010 12:00:00 AM 14

10/31/2011 12:00:00 AM 221

11/30/2011 12:00:00 AM 208

122120011 120000 ARA 222

Figure 28.1 You can use NATURALLEFTOUTERJOIN to
implement virtual outer joins.

Analysis
Using NATURALLEFTOUTERJOIN requires some preparation.
First, the query wraps both DimDate and CustomerBase
tables with SELECTCOLUMNS so they both have a column
called Date. Notice that when projecting the Date column,
the query uses an expression-based column to calculate a
bogus expression that adds zero to the date. It does this to
remove the data lineage from the column so that both date
columns have an identical (in this case empty) data lineage.
At this point, the query will return all dates from the
DimDate table (with or without customers) which is the
expected result from a left outer join. Lastly, the GROUPBY
function is used to group by the Date column and remove
dates with no data (in order words, to convert the join to an
inner join).
Practice
Suppose you have an app that prompts the user to specify a
subset of customers and as-of dates for each customer. Your
query needs to calculate certain metrics, such as Sales, for
these customers but as of the user-specified date for each
customer. If the tables don't have physical relationships, you
might get the best performance if you use TREATAS, which
has the following syntax:

TREATAS (<Expression>, <ColumnName> [, <ColumnName>1[, ...]1])

The first argument (Expression) is a table-producing
expression that returns columns to be mapped from the
source table followed by the columns in the target table.
Matching is done on column names so the joined columns
must have identical names.

DEFINE

VAR filter =

DATATABLE (

"Customer Id", STRING,

"Date", DATETIME,

{ { "AW00011000", "1/19/2011" }, { "AW00011001", "1/15/2010" } }
)

EVALUATE

ADDCOLUMNS (

TREATAS (_filter, DimCustomer[CustomerAlternateKey], 'DimDate'[Date]),
"Sales", CALCULATE (SUM (FactIinternetSales[SalesAmount])),

"Quantity"”, CALCULATE (SUM (FactinternetSales[OrderQuantity]))
)

Output
CustomerAlternateKey Date Sales Quantity

Figure 28.2 Using TREATAS to propagate filters.

Analysis

DAX supports static tables using the DATATABLE function, but
the resulting data table is very limited in features. First, you
can't name the table in your query, so you need to resort to
using a variable. More importantly, many DAX operations
that reference columns, such as attempting to compute MAX
of a table column to get the "current" value, will error with
“Table variable ‘_filter’ cannot be used in current context
because a base table is expected”. You can't create physical
relationships to a custom data table either.

However, you can use TREATAS to establish virtual
relationships based on the input parameters in the data
table. The query has a _filter variable that points to a custom
data table with two customers and corresponding as-of
dates. Then, the query uses TREATAS to evaluate the sales
and order quantity for each customer as of the specified
date. One cautionary note | need to warn you about is that
the cost of such "per-row" virtual relationships could be
expensive.

28.1.2 Implementing Virtual Inner Joins

Virtual inner joins can be implemented with
NATURALINNERJOIN, INTERSECT, and CROSSJOIN.
NATURALINNER]JOIN works the same way as
NATURALLEFTOUTERJOIN except that it retains only column
values that match.

Practice
INTERSECT returns column values from one table that match
column values in another table. It has the following syntax:

INTERSECT (<LeftTable>, <RightTable>)

Both arguments must return tables with the same number of
columns that will be joined. You can think of INTERSECT like
EXISTS in SQL. The following query returns the
DimDate[Date] and DimDate[CalendarQuarter] columns only
for the dates that exist in the CustomerBase[Monthjoined]

column.

EVALUATE

CALCULATETABLE (

SELECTCOLUMNS(DimDate, "Date", DimDate[Date], "Year",
DimDate[CalendarYear]),

INTERSECT (

ALL(DimDate[Date]),

VALUES(CustomerBase[Monthjoined])

))

Output

Date Year
12/31/2010 12:00:00 AM 2010
10/31/2011 12:00:00 AM 2011

11/30/2011 12:00:00 AM 2011
12/31/2011 12:00:00 AM 2011

Figure 28.3 Using INTERCEPT to implement SQL-like EXISTS
joins.

Analysis

The query uses the INTERSECT function to find a subset of
the DimDate[Date] column values that match
Customer[Monthjoined]. Instead of ALL, you can use
VALUES(DimDate[Date]), but you may still need ALL to
ignore the filter context if the first column comes from a fact
table.

To finish with INTERSECT, another DAX function EXCEPT
works in the same way but returns only rows from the left-
side table that are not in the right-side table.

28.2 Implementing Other Joins

DAX has a few more functions for working with joins that
deserve attention. They allow you to cross join, merge, and
generate tables.

28.2.1 Implementing Cross Joins

The CROSSJOIN function returns all the combinations (a cross
join) between two or more tables, and it has this syntax:

CROSSJOIN (<Table> [, <Table> [, ... 11)

Together with FILTER, CROSSJOIN can be used to implement
a virtual inner join.

Practice
The following query returns the same results as the
INTERSECT query:

EVALUATE
CALCULATETABLE (

SELECTCOLUMNS (DimDate, "Date", DimDate[Date], "Year",
DimDate[CalendarYear]),

FILTER (

CROSSJOIN (ALL (DimDate[Date]), VALUES (CustomerBase[Monthjoined])),
DimDate[Date] = CustomerBase[Monthjoined]

)

Analysis

The CROSSJOIN function returns all combinations between
the DimDate[Date] and CustomerBase [Monthjoined]
columns. Then, the FILTER function limits the results to only

values where the two dates match.

28.2.2 Merging Tables

The DAX UNION function can fulfill a similar role as the SQL
UNION ALL function. It returns the union of the two or more
tables whose columns match. UNION has the following
syntax:

UNION (<Table> [, <Table> [, ...11)

Practice

The following query appends selected columns from
FactinternetSales and FactResellerSales and then computes
the sum of sales by source.

EVALUATE

GROUPBY (

UNION (

SELECTCOLUMNS (

FactinternetSales, "Source", "Internet", "Date", FactinternetSales[OrderDate],
"ProductKey", FactinternetSales[ProductKey], "Sales",

FactinternetSales[SalesAmount]

)
SELECTCOLUMNS (

FactResellerSales, "Source", "Resale", "Date", FactResellerSales[OrderDate],
"ProductKey", FactResellerSales[ProductKey], "Sales",
FactResellerSales[SalesAmount]

)
),

[Source]
,"TotalSales", SUMX (CURRENTGROUP (), [Sales]))

Output

Source TotalSales
Internet 29358677.2207

Figure 28.4 UNION combines columns from the
FactinternetSales and FactResellerSales tables.

Analysis

This query combines column values ("rows") from the two
fact tables. It adds a column "Source" to indicate the source
table. Then, it uses GROUPBY to group the Source column
and sum sales.

28.2.3 Generating Tables

Like CROSSJOIN, the GENERATE function cross joins two
tables, but it also evaluates the right-side table in the
context of each row in the left-side table.

Practice

Suppose you have a list of dates and for each date you want
to get the orders that are open as of that date. The following
query does this (to avoid many rows, it returns only the first
10 orders).

EVALUATE

TOPN (10,

SELECTCOLUMNS (

GENERATE (

FactinternetSales,

FILTER (DimDate,

AND (DimDate[Date] >= FactinternetSales[OrderDate], DimDate[Date] <=
FactinternetSales[ShipDate])

)

),
"Date", DimDate[Date],

"Order Number", FactinternetSales[SalesOrderNumber]

)

Output

Date Order Number
12/29/2010... SO43700
12/29/2010... SO43699
12/29/2010... 5043698
12/29/2010... SO43697

Figure 28.5 Using GENERATE to return a list of orders that
are open as of each date in a list of dates.

Analysis

The query passes FactinternetSales as the first argument of
the GENERATE function and a filtered list of DimDate that
contains only the dates where the date is between the order
date and ship date. This works because when GENERATE
iterates each row in FactinternetSales, it passes the row
context to the second table. As a result, only the sales orders
that are open as of that date are filtered. Another DAX
function GENERATEALL, can be used as a left join to retain
rows from the right-side table if the evaluated expression
results in an empty value.

28.3 Summary

For best performance, you should always create physical
(active or inactive) relationships. Power Bl maintains internal
structures and indexes to optimize joins over physical
relationships. However, the model complexity might
sometimes preclude physical relationships. In this case, you
can use the DAX functions discussed in this lesson to
implement virtual joins, ranging from looking up values to
more complicated joins.

Lesson 29
Applying Data Security

Do you have a requirement to allow certain users (internal or
external) to see only a subset of data that they're authorized
to access? For example, as a model author you have access
to all the data you imported. However, when you publish the
model to Power Bl Service, you want other users to see only
sales for a specific geography. Or, you might want to restrict
external partners to access only their data in a multi-tenant
model that you published to powerbi.com. This is where the
Power Bl data security (also known as row-level security or
RLS) can help, and this lesson shows you how.

29.1 Understanding Data Security

Data security is supported for models that import data and
that connect live to data, except when connecting live to
Analysis Services, which has its own security model. At a
high level, implementing data security is a two-step process:

* Modeling step - This involves defining roles and table
filters inside the model to restrict access to data. Table
filters are implemented as DAX formulas.

* Operational step - Once the security roles are defined, you
need to publish the model to Power Bl Service to assign
members to roles. Configuring membership is the
operational aspect of RLS that needs to be done in Power
Bl Service (powerbi.com).

It's important to understand that data security is only
enforced in Power Bl Service, that is when the model is
published and shared with other users who have view-only
rights (they don't have Admin or Edit Content permissions to
a workspace) to shared content. Such users won't be able to
access any data unless they are assigned to a role. However,
if you share the Power Bl Desktop file with another user and
he opens it in Power Bl Desktop, data security is not
enforced.

29.1.1 Understanding Roles

Setting up data security requires implementing roles and
table filters. A role allows you to grant other users restricted
access to data in a secured model. A table filter limits the
data the user can see in a table and its related tables.

Setting up roles

Figure 29.1 is meant to help you visualize a role. In a
nutshell, a role gives its members permissions to view the
model data. To create a new role, click the Manage Roles
button in the ribbon's Modeling tab. Then, click the Create
button in the "Manage roles" window and name the role. As |

mentioned, after you deploy the model to Power Bl Service,
you must assign members to the role. You can type in email
addresses of individual users, security groups, and
workspace groups.

A
Members Row access W

o
o o T]
—~ Y

Table Filter

Table

Figure 29.1 A role grants its members permissions to a
table, and it optionally restricts access to table rows.

Understanding role additivity

Roles are additive. If a user belongs to multiple roles, the
user will get the superset of all the role permissions. For
example, suppose the user is a member of both the Sales
Representative and Marketing roles. The Sales
Representative role grants him rights to United States, while
the Marketing role grants him access to all countries.
Because roles are additive, he can see data for all countries.

TIP As it stands, Power Bl doesn’t support object security to hide entire tables.
Even if the table filter qualifies no rows, the table will show in the model
metadata. The simplest way to disallow a role from viewing any rows in a table is
to set up a table filter that returns FALSE(). If no table filter is applied to a table,
TRUE() is assumed and the user can see all of its data.

29.1.2 Understanding Table Filters

By default, a role can access all the data in all tables in the
model. However, the whole purpose of implementing data
security is to limit access to a subset of data, such as to
allow some users to see only sales for the United States. This
is achieved by specifying one or more table filters. As its
name suggests, a table filter defines a filter expression that
evaluates which table rows the role can see. To set up a row
filter in Role Manager, enter a DAX formula next to the table
name.

Understanding filter formulas

The DAX formula must evaluate to a Boolean condition that
returns TRUE or FALSE. For example, when the user connects
to the published model and the user is a member of the role,
Power Bl applies the row filter expression to each row in the
DimSalesTerritory table. If the row meets the criteria, the role
is authorized to see that row. For example, Figure 29.2
shows that the "US" role applies a row filter to the
SalesTerritory table to return only rows where the
SalesTerritoryCountry column equals "United States".

How table filters affect related tables

From an end-user perspective, rows the user isn't authorized
to view and their related data in tables on the many side of
the relationship simply don't exist in the model. Imagine that
a global WHERE clause is applied to the model that selects
only the data that's related to the allowed rows of all the
secured tables.

Given the US role setup shown in Figure 29.2, the user
can't see any other sales territories in the DimSalesTerritory
table except "United States". Moreover, because of the
DimSalesTerritory -> FactResellerSales filter direction, the
user can't see sales for these territories in the
FactResellerSales table or in any other tables that are
directly or indirectly (via cascading relationships) related to
the DimSalesTerritory table if the filter direction points to
these tables. In other words, Power Bl propagates data
security to related tables following the filter direction of the
existing relationships.

Manage roles

Dalac T
"\.\J|::‘_~

ables Table Filter DAX Expression

Us w Customer . :
[SalesTerritoryCountry] = “United States”

Date

Create Delete Employee

Geography
IntemetSales
Product
Reseller
ResellerSales

SalesTemtory o

Filter the data that this role can see by entering a DAX filter expression

that returns a True/False value. For example: [Enfity ID] = “Value"

Save Cancel

Figure 29.2 This table filter grants the US role access to
rows where SalesTerritoryCountry is United States.

What about other dimension tables, such as DimReseller?
Should the user see only resellers with sales in the United
States? Again, the outcome depends on the relationship
cross-filter direction. If it's Single (there is a single arrow
pointing from DimReseller to FactResellerSales), the security
filter is not propagated to the DimReseller table and the user
can see all resellers. To clarify, the user can see the list of all
resellers, but he can see only sales for the US resellers
because sales come from the filtered ResellerSales table.
However, if the relationship cross-filter direction is Both (a
bidirectional relationship) and the "Apply security filter in

both directions" setting on the relationship properties is
checked, then data security propagates to DimReseller table
and the user can see only resellers with sales in the United

States.

29.2 Implementing Basic Data
Security

In the exercise that follows, you'll add a role that allows the
user to view only sales in the United States. Then, I'll show
you how to test the role on the desktop and how to add
members to the role after you deploy your model to Power Bl
Service.

29.2.1 Changing the Model

Remember that setting up the security role and table filters
are done in the Power Bl Desktop.

Practice
Start by creating a new role in the Adventure Works model.

1.In the ribbon's Modeling tab, click the Manage Roles button.

2.In the Manage Roles window, click the Create button.
Rename the new role to US.

3.Click the ellipsis button next to the DimSalesTerritory table,
and then click "Add filter..." -> [SalesTerritoryCountry] to
filter the values in this column.

4.Change the "Table Filter DAX Expression" content with the
following formula:

[SalesTerritoryCountry] = "United States"
5.Click Save.

TIP Consider adding an Open Access role that doesn't have any table filter. This
role is for users who need full access to data. Recall that by default a role has
unrestricted access unless you define a table filter.

Output

You don't have to deploy the model to Power Bl Service to
test the role. Power Bl Desktop lets you do this conveniently
on the desktop. This allows you to test the role as though
you're a user who is a member of the role.

1.In the ribbon's Modeling tab, click the "View as Roles"
button.

2.In the "View as roles" window, check the US role. Click OK.

3.You should see a status bar showing "Now viewing report
as: US". Create a report that includes the
SalesTerritoryCountry column from the DimSalesTerritory
table, such as the one shown in Figure 29.3. The report
should show only data for US.

Pl Swanmem remerd mce | JE T m e P
Y WIS WY g TSRO O U S WG

544

Total $6.552.075.85 $17.622.549.51 $20.071.1
Figure 29.3 The report shows only data for United States.

4.(Optional) Add a Table visualization showing the
ResellerName column from the DimReseller table. You should
see all resellers. However, if you add a measure from the
FactResellerSales table, you should see only resellers with
sales in the US. If you want to prevent the role from seeing
non-US resellers, change the cross-filter direction of the
FactResellerSales[ResellerKey] -> DimReseller[ResellerKey]
relationship to Both.

Analysis

When you browse the data as a member of the US role, you
can see only United States in DimSalesTerritory. Moreover,
you can see only sales transactions associated with this
country. Data security automatically propagates to all fact
tables related to the secured dimension table. It's also
possible to propagate data security to dimension tables.

29.2.2 Defining Role Membership

Now that the role is defined, it becomes a part of the model,
but its setup is not complete yet. Next, you'll deploy the
model to Power Bl Service and add members to the role.

Practice
Let's deploy the Adventure Works model to powerbi.com to
finalize the security setup.

1.In the ribbon's Home tab, click Publish. If prompted, log in
to Power Bl and deploy the Adventure Works model to My
Workspace.

2.0pen your browser and navigate to Power Bl Service
(powerbi.com). Click My Workspace.

3.In the workspace content page, click the Datasets tab. Click

the ellipsis button next to the Adventure Works dataset, and
then click Security from the drop-down menu.

Power Bl 0 My Workspace > Row-Level Security

Row-Level Security

3¢ Favorites
Members (0)

(8 Recent

People or groups who belong to this role
Apps

Enter email addresses

2 Shared with me

& Works paces

0 My Workspace

71 GetData

Figure 29.4 You set up the role membership in Power BI
Service.

Save Cancel

4.In the "Row-Level Security" window, add the emails of
individuals or groups who you want to add to the role
(Figure 29.4). You can also add external users that you
have previously shared content with as members to the role.
Click Save.

Output
It's always a good idea to check data security with other
users to ensure it works.

1.Create a report that uses visualizations from the Adventure
Works report and share it with users who belong and don't
belong to the role (you and the recipients must have Power
Bl Pro or Power Bl Premium subscriptions). Ask them to view
the dashboard and report their results.

2.(Optional) Republish the Adventure Works model. Power Bl
Desktop will ask you to replace the dataset. In Power Bl
Service, go to the Adventure Works dataset security settings
and notice that the role membership is preserved. That's
because the role membership is external to the Adventure
Works model and republishing the file doesn't overwrite it.
However, if you delete the dataset in Power Bl Service, you'll
lose its role membership.

NOTE As a model author, you always have admin rights to model so don't be
surprised that you see all the data irrespective of your role membership. If you
publish the model to a workspace, the workspace administrators and members
who can edit content also gain unlimited access.

Analysis

Once data security is enabled, users can't see the model
data by default. Although the user has rights to run the
report, data security will prevent the user to see any data
unless the user is a member of the security role that grants

the user data access.

29.3 Summary

Power Bl has various security checks to ensure that the user
is authorized to view reports and dashboards. Row-level
security (RLS) is the most granular because it restricts the
user to see a subset of the model data. You use DAX
formulas to define table filters at design time and add role
members in Power Bl Service.

Lesson 30

Implementing Dynamic
Security

The row filter in the previous lesson returns a fixed (static)
set of allowed rows. This works well if you have a finite set of
unigue permissions. For example, if there are three regions,
you can build three roles. Static filters are simple to
implement and work well when the number of roles is
relatively small. However, suppose you must restrict
managers to view only the sales data of the employees that
are reporting directly or indirectly to them. If static filters
were the only option, you'd have no choice except to set up
a database role for each manager. This might lead to a huge
number of roles and maintenance issues. Therefore, Power Bl
supports dynamic data security. You'll find the DAX formulas
for this lesson in \Source\Part6\Implementing Dynamic
Security.dax.

30.1 Understanding Dynamic Data
Security

Dynamic security relies on the identity of the interactive user
to filter data. For example, if | log in to Power Bl as
teo.lachev@adventure-works.com, a role can filter the
Employee table to me and my subordinates. Instead of
creating a role per user, you need only a single role with the
following table filter applied to the Employee table:

PATHCONTAINS(DimEmployee[Path],
LOOKUPVALUE(DimEmployee[EmployeeKey], DimEmployee[EmailAddress],
USERPRINCIPALNAME()))

30.1.1 Authenticating the Interactive User

The cornerstone of dynamic data security is obtaining the
identity of the interactive user and applying security policies
based on that identity.

Obtaining the user identity

The above formula uses the USERPRINCIPALNAME() DAX
function (specifically added to support Power Bl) which
returns the user principal name (UPN) in both Power BI
Service and Power BI. If you have set up dynamic security
with Analysis Services Multidimensional or Tabular, you have
probably used the USERNAME() function. However, this
function returns the user domain login in Power Bl Desktop
(see Figure 30.1). You can use the WhoAml.pbix Power BI
Desktop file in the \Source\Part6 folder to verify the results.

USERMAME ¥ USERPRINCIPALNAME USERNAME ™ USERPRINCIPALNAME

Power Bl Desktop

teclachevi@prologikacom teolachevi@prologikacom prologikaitlachev teolachev@prologika.com

Figure 30.1 USERPRINCIPALNAME() and USERNAME() return
different results in Power Bl Desktop.

mailto:teo.lachev@adventure-works.com

To avoid using an OR filter to support both Power Bl and
Power Bl Desktop, use USERPRINCIPALNAME() but make sure
that the EmailAddress column stores the user principal name
(typically but not always UPN corresponds to the user's email
address) and not the user's Windows login (domain\login).

Authorizing access

To explain the rest of the filter, the DAX expression uses the
LOOKUPVALUE function to retrieve the value of the
EmployeeKey column that's matching the user's login. Then,
it uses the PATHCONTAINS function to parse the Path column
in the Employee table in order to check if the parent-child
path includes the employee key. If this is the case, the user is
authorized to see that employee and his associated sales
because the user is the employee's direct or indirect
manager.

NOTE If your computer is not joined to a domain, both USERPRINCIPALNAME()
and USERNAME() would return your login (NetBIOS name) in the format
MachineName\Login in Power Bl Desktop. In this case, you'd have to use an OR
filter so that you can test dynamic security in both Power Bl Service and Power Bl
Desktop.

30.1.2 Implementing Organizational Security

I'll walk you through the steps required to implement
dynamic data security for the manager-subordinate scenario
we just reviewed.

Practice

Start by creating a new role that filters the DimEmployee
table.

5.In the ribbon's Modeling tab, click Manage Roles.

6.In the "Manage roles" window create a new Employee role.
7.In the Table section, select the Employee table. Enter the
following expression in the "Table Filter DAX Expression" field
(recall that you implemented the Path column in the
"Recursive Relationships" lesson):

PATHCONTAINS(DimEmployee[Path],
LOOKUPVALUE(DimEmployee[EmployeeKey], DimEmployee[EmailAddress],
USERPRINCIPALNAME()))

8.Click the checkmark button in the top right corner of the
window to check the expression syntax. If there are no
errors, click Save to create the role.

Output
Now that the Employee role is in place, let's make sure it
works as expected.

1.In the ribbon's Modeling tab, click "View As Roles" (see
Figure 30.2).

View as roles

None

¥ Other user stephen0@adventure-works
¥ Employee

us
oK Cancel

Figure 30.2 The "View as roles" window lets you test
specific roles and impersonate users.

2.In the "View as roles" window, check the "Other user"
checkbox and type in stephenO@adventure-works.com to
impersonate this user. As a result, USERPRINCIPALNAME()
returns Stephen's login.

3.Check the Employee role to test it as though Stephen is a
member of the role. Click OK.

4.(Optional) Create a Matrix report that uses the Employees
hierarchy (or Levell-Level6 fields) and the
DimEmployee[Sales Amount (h)] measure you implemented
in the "Recursive Relationships" lesson, as shown in Figure
30.3.

mailto:stephen0@adventure-works.com

Levell SalesAmount (h

"Ken Sénchez $63,320,315

Brian Welcker $63,320,315
Stephen Jiang $63,320,315
David Campbell $3,729,945
Garrett Vargas $3,600 447
Jillian Carson $10,065,804
José Saraiva $5,926,418
Linda Mitchell $10,367,007
Michael Blythe $9,293,903
Pamela Ansman-Wolfe $3,325,103
Shu lto $6,427,006
Tete Mensa-Annan $2,312,546
Tsvi Reiter £7171013 ¥
Total $63,320,315

Figure 30.3 This report shows only Stephen Jiang and his
direct or indirect subordinates.

Analysis

The report lets you access only Stephen Jiang and his direct
or indirect subordinates. When you run the report, Power Bl
normally obtains the identity of the interactive user, but you
overwrote it with Stephen's login. The DAX formula in the
Employee role applies a filter to DimEmployee to filter only
Stephen and his subordinates. Notice that the report also
shows Stephen's direct and indirect managers (otherwise,
there won't be a way to drill down to Stephen), but their
totals are filtered to include only Stephen's team
contribution.

30.2 Externalizing Security Policies

The final progression of data security is externalizing security
policies in another table. Suppose that Adventure Works uses
a master data management application, such as Master Data
Services (MDS), to associate a sales representative with a set
of resellers that she oversees. Your task is to enforce a
security role that restricts the user to see only her resellers.
This would require importing a table that contains the
employee-reseller associations.

REAL LIFE This approach builds upon the factless fact table implementation that
| demonstrated in my "Protect UDM with Dimension Data Security, Part 2" article
(http://bit.ly/YBculd). I've used this approach in real-life projects because of its
simplicity, performance, and ability to reuse the security filters across other
applications, such as across operational reports that source data directly from the
data warehouse.

30.2.1 Implementing a Security Policy Table

A new SecurityFilter table is required to store the authorized
resellers for each employee

(see Figure 30.4). This table is related to the Reseller and
Employee tables. If an employee is authorized to view a
reseller, a row is added to the SecurityFilter table. In real life,
business users or IT pros will probably maintain the security
associations in a database or external application.

™ Employee SecurityFilter 7 Reseller
Employeekey EmployeeKey Resellerkey
2 x=
>’ ParentEmployeekey _é_ Reselleriey GeographyKey
1 1
T -
>’ SalesTerritorykey 5 _I}I_ ResellerlD

FirstName Phone

Figure 30.4 The SecurityFilter bridge table stores the
authorized resellers for each employee.

Importing the security policy table
For the sake of simplicity, you'll import the security policies
from a text file (you can also enter the data directly using

the Enter Data button in the ribbon's Home tab).
1.In the ribbon's Home tab, click Get Data. Choose Text/CSV.

2.Navigate to the \Source\Part6 folder and select the
SecurityFilter.csv file. Click Open.

5.Preview the data and compare your results with Figure
30.5. Click Load. Power Bl Desktop adds a SecurityFilter
table to the model.

SecurityFilter.csv -
File Ongin Delimiter Data Type Detection
65001: Unicode (UTF-8) v Comma v Based on first 200 rows

EmployeeKey Resellerkey

272 1
272 351
272 448
290 320
290 445
290 553
290 663

Load Edit Cancel

Figure 30.5 The SecurityFilter file includes the allowed
resellers that an employee can access.

6.Because users shouldn't see this table, right-click the
SecurityFilter table in the Fields pane (Data View) and click
"Hide in Report View".

Creating relationships
Next, relate the SecurityFilter table to the appropriate
dimensions.

1.In the Relationships View, double-click the
FactResellerSales[ResellerKey] ->DimReseller[ResellerKey]

relationship. If the "Apply security filter in both directions"
checkbox is checked, uncheck it because it will conflict with
the new relationships.

2.In the Relationships View, verify that the
SecurityFilter[EmployeeKey] ->DimEmployee[EmployeeKey]
and SecurityFilter[ResellerKey] ->DimReseller[ResellerKey]
relationships exist and that they are active. If that's not the
case, make the necessary changes to create these two
relationships.

REAL LIFE Although in this case the SecurityFilter table is related to other tables,
this is not a requirement. DAX is flexible and it allows you to filter tables using
the FILTER function even if they can't be related. For example, a real-life project
required defining application security roles and granting them access to any level
in an organization hierarchy. The DAX row filter granted the role access to a
parent without explicit access to its children. The security table didn't have
relationships to the fact table.

30.2.2 Implementing External Security

Now that the security policy table is in place, the next step is
to implement the role and set up a table filter that will
authorize the user to see only the permitted resellers.

Practice
Next, you'll add a role that will enforce the security policy.
Follow these steps to set up a new Reseller role:

1.In the ribbon's Modeling tab, click Manage Roles.
2.In the "Manage roles" window create a new Reseller role.
3.In the Table section, select the DimReseller table.

a.Enter the following expression in the "Table Filter DAX
Expression” field:

CONTAINS(RELATEDTABLE(SecurityFilter), SecurityFilter[EmployeeKey],
LOOKUPVALUE(DimEmployee[EmployeeKey], DimEmployee[EmailAddress],
USERPRINCIPALNAME()))

Output

Let's follow familiar steps to test the role:

1.In the ribbon's Modeling tab, click "View As Roles". In the

"View as roles" window, check the "Other user" option and
enter stephenO@adventure-works.com as before.

mailto:stephen0@adventure-works.com

2.Check the Reseller role and click OK.

3.Create a Table report that uses the ResellerName field from
the Reseller table. The report should show only the three
resellers associated with Stephen.

4.(Optional) In the Home ribbon, click the Publish button.
Deploy the Adventure Works model to Power Bl Service. Add
members to the Employee and Reseller roles. Ask the role
members to view reports and report results.

Analysis

Examining the table filter formula, the LOOKUPVALUE
function is used to obtain the employee key associated with
the email address. Because the table filter is set on the
Reseller table, for each reseller, the CONTAINS function
attempts to find a match for that reseller key and employee
key combination in the SecurityFilter table. Notice the use of
the RELATEDTABLE function to pass the current reseller. The
net effect is that the CONTAINS function returns TRUE if there
is a row in the SecurityFilter table that matches the
ResellerKey and EmployeeKey combination.

30.3 Summary

Power Bl supports flexible data security that can address
various security requirements, ranging from simple filters,
such as users accessing specific countries, to externalizing
security policies and dynamic security based on the user's
identity. The cornerstone of dynamic security is obtaining the
user identity by using the USERPRINCIPALNAME function. You
define security roles and table filters in Power Bl Desktop and
role membership in Power Bl Service (powerbi.com).

Appendix A

Glossary of Terms

The following table lists the most common terms and
acronyms used in this book.

Term

Acronym Description

Analysis Services Tabular

Analysis Services
Multidimensional

Business Intelligence
Semantic Model

Calculated column

Calculated table
Composite model

Cube

Data Analysis Expressions
Data model
Data security

Dataset

Date table
DAX Studio

DirectQuery

Dimension (lookup) table

BISM

DAX

An instance of SQL Server Analysis Services that's configured
in Tabular mode to host Power Bl models and organizational
semantic models.

An instance of SQL Server Analysis Services that's configured
in Multidimensional mode to host Power Bl models and
organizational semantic models (OLAP cubes).

A unifying name that includes both Multidimensional (OLAP)
and Tabular (relational) features of Microsoft SQL Server
Analysis Services.

A DAX expression-based column added to a table in the data
model.

A table that is produced with a DAX expression.
A data model with hybrid (import and DirectQuery) storage.

An OLAP structure organized in a way that facilitates data
aggregation, such as to answer queries for historical and
trend analysis.

An Excel-like formula language for defining custom
calculations and for querying tabular models.

A Bl model designed with Power Bl Desktop or Analysis
Services.

Implemented as DAX row filters, data security restricts access
to data in the model.

The definition of the data that you connect to in Power B,
such as a dataset that represents the data you import from an
Excel file.

A table that stores a consecutive range of dates to fulfill the
role of a Date dimension table.

A community tool for working with DAX queries
(https://daxstudio.org)

A data connectivity configuration that allows Power Bl to
generate and send queries to the data source without
importing the data.

A table that represents a business subject area and provides
contextual information to each row in a related fact table,
such as Product, Customer, and Date.

https://daxstudio.org/

Term

Acronym Description

Extraction, transformation,
loading

Explicit measure

Implicit measure

Fact table

Filter context

Key Performance Indicator

M

Measure

Multidimensional

Multidimensional Expressions MDX

Online Analytical Processing OLAP

Paginated report

Power BI

Power Bl Desktop

Power Bl Premium

Power Bl Report Server

Power Bl Service

Power Pivot for Excel

Power Pivot for SharePoint

Power Query

Query

Quick measure

Relationship

Row context

ETL

KPI

Processes extract from data sources, clean the data, and load
the data into a target database, such as data warehouse.

A DAX measure that you create by entering a DAX formula.

A DAX measure that is created automatically when you add a
field to the visual's Values area.

A table that keeps a historical record of numeric
measurements (facts), such as the
FactResellerSales table in the Adventure Works model.

Typically used by measures, represents the scope in which the
measure formula is executed.

A key performance indicator (KPI) is a quantifiable measure
that is used to measure the company performance, such as
Profit or Return on Investment (ROI).

The expression-based language of Power Query

A business calculation that is typically used to aggregate
data, such as SalesAmount, Tax, and OrderQuantity.

The OLAP path of BISM that allows Bl professionals to
implement multidimensional cubes.

A query language for Multidimensional for defining custom
calculations and querying OLAP cubes.

A system that is designed to quickly answer multidimensional
analytical queries to facilitate data exploration and data
mining.

A standard, paper-oriented report that is one of the report
types supported by SSRS

A data analytics platform for self-service, team, and
organizational Bl that consists of Power Bl Service, Power Bl
Desktop, Power Bl Premium, Power Bl Mobile, Power Bl
Embedded, and Power Bl Report Server products.

A free desktop tool for creating Power Bl reports and self-
service data models.

A Power Bl Service add-on that allows organizations to
purchase a dedicated environment.

An extended edition of SSRS that supports paginated reports,
Power Bl reports and Excel reports.

The cloud-based service of Power Bl (powerbi.com). The terms
Power Bl and Power Bl Service are used interchangeably.

A free add-in that extends the Excel capabilities to allow
business users to implement personal Bl models.

Included in SQL Server 2012, PowerPivot for SharePoint
extends the SharePoint capabilities to support PowerPivot
models.

A layer in Power Bl Desktop and Excel for transforming and
shaping data on which a data model is implemented.

A DAX query allows external clients to query published data
models.

A DAX measure that is implemented with a Power Bl
prepackaged formula.

A physical or virtual join between two tables

Typically used in calculated columns, represents the "current"
row.

Term Acronym Description

Row-level Security RLS A security mechanism for ensuring restricted access to data.
Self-service Bl Same as Personal Bl.
Semantic model Layered between the data and users, the semantic model

translates database structures into a user-friendly model that
centralizes business calculations and security.

SQL Server Analysis Services SSAS A SQL Server add-on, Analysis Services provides analytical
and data mining services. The Business Intelligence Semantic
Model represents the analytical services.

SQL Server Integration SSIS A SQL Server add-on, Integration Services is a platform for

Services implementing extraction, transformation, and loading (ETL)
processes.

SQL Server Management SSMS A management tool that's bundled with SQL Server that

Studio allows administrators to manage Database Engine, Analysis
Services, Reporting Services and Integration Services
instances.

SQL Server Reporting SSRS A SQL Server add-on, Reporting Services is a server-based

Services reporting platform for the creation, management, and delivery

of standard and ad hoc reports.

Snowflake schema Unlike a star schema, a snowflake schema has some
dimension tables that relate to other dimension tables and
not directly to the fact table.

Star schema A model schema where a fact table is surrounded by
dimension tables and these dimension tables reference
directly the fact table.

Tabular Tabular is the second implementation path in Analysis
Services that lets Bl pros implement relational-like (tabular)
semantic models.

Time intelligence Type of analytics to analyze the data by time.

Variable A DAX construct for refactoring certain parts of a formula to
improve readability and performance.

Vertipaq Analyzer A community tool for analyzing the model storage.

xVelocity xVelocity is a columnar data engine that compresses and

stores data in memory.

Increase your Bl 1Q!

Prologika offers consulting, implementation and training
services that deliver immediate results and great ROI. Check
our services, case studies, and training catalog at
https://prologika.com and contact us today to improve and
modernize your data analytics at info@prologika.com.

Currently, we offer these training courses that we can deliver
onsite or remotely. Learn more at
https://prologika.com/training/.

https://prologika.com/
https://prologika.com/training/

Applied Power Bl

Power Bl is a cloud-based business analyfics
senvice that gives you a single view of your most
cifical business data. Monitor the heatth of your

business using 2 live dashboard....

Learn More »»

@

Applied SQL Server Fundamentals

This 2-day instructor led course provides you
with the necessary skills to query Microsoft SQL
Server databases with Transact-30L. It feaches

novice users how to query data stored in S0L

Server data siructures.

Learn More >>

t"’t

!31

Applied SQL Server Analysis Services
(Multidimensional)

This intensive 4-day class is designed to help
you become proficient with Analysis Services
(Mutfidimensional) and acquire fhe necessary

skills fo implement OLAP and data mining
solufions.

Learn More >>

DAX

I/ gu

Applied DAX with Power B

Power Bl promotes rapid personal Bl for
essential dala exploration and analysis.
Chances are, however, that in real e you might
need fo ga beyond just simple agaregations...

Leamn More »>

Applied MS Bl End-to-End

This four-day class is designed to help you
become proficient with the Microsoft Bl fooiset
and acquire skills to implement an end-fo-end

organizafional Bl solufion, including data
warehouse, ETL processes, and a semantic
model.

Learn More »>

Applied Excel and Analysis Services

This 1-day class is designed to help business
users become proficient with using the Excel BI
features to analyze corporate data in Analysis
Senvices Mulfidimensional cubes or Tabular
models.

Learn More >>

1=I|.
i

Applied Bl Semantic Model (Tabular
and Multidimensional)
Targeting Bl developers, this intensive 5-day
class is designed fo help you become proficient
with Analysis Senvices Tabular and
Mulfidmensional...

Leam More »>

D
Nt
V)

Applied SQL Server Reporting Services

This infensive 4-day class is designed fo help
you become proficient with Microsoft SQL
Server Reporting Services and acquire the

necessary skills to author, manage, and deliver

reports.

Leam More »>

Applied Power Bl with Excel

Power Bl s a suile of products for personal
business intelligence (BI). It brings the power of
Microsofts Business Intelligence platform to
business users. At the same fime, Power Bl lefs
T manitor and manage published...

Learn More >

o
N’
SV

Applied Microsoft Visualization Tools

Reporting is an essential feature of every
busingss intelliggnce solulion. One way lo
exiract and disseminate the wealth of
information is io author Reporting Senices
standard regorts, .

Leamn More >>

Applied Master Data Management and
Data Quality
Organtzabions thal investin master data
management and improving the quaty of their
iformational assats will be best posiiioned fo
reap

l.'.'ﬂ|"M.'|L'

